Experimental Study on Vertical Stiffness of WJ-8 Fastener for High-Speed Railway

2015 ◽  
Vol 723 ◽  
pp. 100-103 ◽  
Author(s):  
Can Liu ◽  
Zhi Ping Zeng ◽  
Jia Yu Yuan ◽  
Bin Wu ◽  
Kun Teng Zhu

The rail vertical displacement of CRTSII slab track structure under vertical static loads was analyzed in this paper by using 1:1 full-scale track model, based on which the WJ-8 fastener vertical static stiffness was calculated, and the rationality of the fastener vertical stiffness values and the relationship between the values and load were studied. According to the beam-plate theory and beam-solid theory for slab ballastless track, a finite element analysis model of CRTSII slab track structure was established. The rail vertical displacement under the same case as test was calculated by using the measured fastener vertical stiffness value. The rationality of the method for testing and the fastener vertical static stiffness is verified through comparing the calculated values with experimental ones.

2011 ◽  
Vol 97-98 ◽  
pp. 3-9
Author(s):  
Yang Wang ◽  
Quan Mei Gong ◽  
Mei Fang Li

The slab track is a new sort of track structure, which has been widely used in high-speed rail and special line for passenger. However, the ballastless track structure design theory is still not perfect and can not meet the requirements of current high-speed rail and passenger line ballastless track. In this paper, composite beam method is used to calculate the deflection of the track plate and in this way the vertical supporting stress distribution of the track plate can be gotten which set a basis for the follow-up study of the dynamic stress distribution in the subgrade. Slab track plate’s bearing stress under moving load is analyzed through Matlab program. By calculation and analysis, it is found that the deflection of track plate and the rail in the double-point-supported finite beam model refers to the rate of spring coefficient of the fastener and the mortar.The supporting stress of the rail plate is inversely proportional to the supporting stress of the rail. The two boundary conditions of that model ,namely, setting the end of the model in the seams of the track plate or not , have little effect on the results. We can use the supporting stress of the track plates on state 1to get the distribution of the supporting stress in the track plate when bogies pass. Also, when the dynamic load magnification factor is 1.2, the track plate supporting stress of CRST I & CRST II-plate non-ballasted structure is around 40kPa.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6653
Author(s):  
Leixin Nie ◽  
Lizhong Jiang ◽  
Wangbao Zhou ◽  
Yulin Feng

This paper examines the effect of structural deformation on the unit slab-type ballastless track structure of high-speed railway. The principle of stationary potential energy was used to map the relation between girder vertical deformation and rail deformation considering the effect of subgrade boundary conditions and the nonlinear contact of interlayer. The theoretical model was verified by comparing with the finite element analysis and experimental results. The theoretical model was used to analyze the effects of several key parameters on the rail deformation, such as vertical deformation amplitude, elastic modulus of the mortar layer, and vertical stiffness of the fasteners. The results show that the track slabs suffered significant disengagement, which makes the deformation of the track structure at the position of the beam joint tend to be gentle when nonlinear contact between the mortar layer and the track slabs was considered. The track slabs disengagement mainly occurs near the beam joints (the side of the deformed beam). As the deflection amplitude of the girder increases, the track deformation, the fastener forces and the disengagement length of the track slabs are obviously nonlinear. When the vertical stiffness of the fastener and/or the elastic modulus of the mortar layer increase, the fastener force and the track plate disengagement length increase monotonically and nonlinearly, which will adversely affect the life and safety of the track structure.


Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2876
Author(s):  
Yingying Zhang ◽  
Lingyu Zhou ◽  
Akim D. Mahunon ◽  
Guangchao Zhang ◽  
Xiusheng Peng ◽  
...  

The mechanical performance of China Railway Track System type II (CRTS II) ballastless track suitable for High-Speed Railway (HSR) bridges is investigated in this project by testing a one-quarter-scaled three-span specimen under thermal loading. Stress analysis was performed both experimentally and numerically, via finite-element modeling in the latter case. The results showed that strains in the track slab, in the cement-emulsified asphalt (CA) mortar and in the track bed, increased nonlinearly with the temperature increase. In the longitudinal direction, the zero-displacement section between the track slab and the track bed was close to the 1/8L section of the beam, while the zero-displacement section between the track slab and the box girder bridge was close to the 3/8L section. The maximum values of the relative vertical displacement between the track bed and the bridge structure occurred in the section at three-quarters of the span. Numerical analysis showed that the lower the temperature, the larger the tensile stresses occurring in the different layers of the track structure, whereas the higher the temperature, the higher the relative displacement between the track system and the box girder bridge. Consequently, quantifying the stresses in the various components of the track structure resulting from sudden temperature drops and evaluating the relative displacements between the rails and the track bed resulting from high-temperature are helpful in the design of ballastless track structures for high-speed railway lines.


2021 ◽  
Vol 11 (8) ◽  
pp. 3520
Author(s):  
Xiaopei Cai ◽  
Qian Zhang ◽  
Yanrong Zhang ◽  
Qihao Wang ◽  
Bicheng Luo ◽  
...  

In order to find out the influence of subgrade frost heave on the deformation of track structure and track irregularity of high-speed railways, a nonlinear damage finite element model for China Railway Track System III (CRTSIII) slab track subgrade was established based on the constitutive theory of concrete plastic damage. The analysis of track structure deformation under different subgrade frost heave conditions was focused on, and amplitude the limit of subgrade frost heave was put forward according to the characteristics of interlayer seams. This work is expected to provide guidance for design and construction. Subgrade frost heave was found to cause cosine-type irregularities of rails and the interlayer seams in the track structure, and the displacement in lower foundation mapping to rail surfaces increased. When frost heave occured in the middle part of the track slab, it caused the greatest amount of track irregularity, resulting in a longer and higher seam. Along with the increase in frost heave amplitude, the length of the seam increased linearly whilst its height increased nonlinearly. When the frost heave amplitude reached 35 mm, cracks appeared along the transverse direction of the upper concrete surface on the base plate due to plastic damage; consequently, the base plate started to bend, which reduced interlayer seams. Based on the critical value of track structures’ interlayer seams under different frost heave conditions, four control limits of subgrade frost heave at different levels of frost heave amplitude/wavelength were obtained.


2012 ◽  
Vol 503-504 ◽  
pp. 1010-1015 ◽  
Author(s):  
Qing Yuan Xu ◽  
Bin Li

By using beam element to model rail, spring element to model fastener, solid element to model different components of ballastless track, contact element to model the connection between each component of ballastless track, a statics three-dimensional nonlinear finite element mechanical model for calculating the forces transmission among rail, fastening and different component of ballastless slab track on subgrade was established. Experimental data of Suining-Chongqing railway line was given to validate the calculation model. Force of ballastless slab track on subgrade under gravity load, train load, uneven settlement load, temperature gradient load as well as combined load was analyzed. Results show that: spatial forces characteristic of ballastless slab track is very notable under train load; uneven settlement load as well as temperature gradient load has significant influence on the mechanical characteristic of ballastless slab track; force of ballastless slab track increases significantly under combined load than that of under any single load.


2020 ◽  
Vol 306 ◽  
pp. 02003
Author(s):  
Haoran Xie ◽  
Bin Yan ◽  
Jie Huang

In order to investigate the vertical dynamic response characteristics of train-track-bridge system on CWR (Continunously Welded Rail) under dynamic load of train on HSR (High-Speed Railway) bridge. Based on the principle of vehicle train-track-bridge coupling dynamics, taking the 32m simply supported bridge of a section of Zhengzhou-Xuzhou Passenger Dedicated Line as an example, the finite element software ANSYS and the dynamic analysis software SIMPACK are used for co-simulation, and bridge model of the steel spring floating slab track and the CRTSIII ballastless track (China Railway Track System) considering the shock absorbing steel spring, the limit barricade and the contact characteristics of track structure layers are established. On this basis, in order to study the dynamic response laws of the design of ballastless track structure parameters to the system when the train crosses the bridge and provide the basis for the design and construction, by studying the influence of the speed of train on the bridge, the damage of fasteners and the parameters of track structure on the train-track-bridge system, the displacement of rail, vertical vibration acceleration and wheel-rail force response performance are analyzed. Studies have shown that: At the train speed of 40 km/h, the displacement and acceleration of the rail and track slab in the CRTSIII ballastless track are smaller than the floating slab track structure, but the floating slab track structure has better vibration reduction performance for bridges. The acceleration of rail, track slab and bridge increases obviously with the increase of train speed, the rail structure has the largest increasement. Reducing the stiffness of fasteners could decrease the vertical acceleration response of the steel spring floating slab track system, the ability to absorb shock can be enhanceed by reducing the stiffness of the fastener appropriately. Increasing the density of the floating slab can increase the vertical acceleration of the floating slab and the bridge, thereby decreasing the vibration amplitude of the system.


2011 ◽  
Vol 52-54 ◽  
pp. 1206-1211 ◽  
Author(s):  
Huai Xing Wen ◽  
Mei Yan Wang

The thermal characteristics of the motorized spindle determines maching qualities and cutting capabilities, and is one of the important factors influencing the precision of the high speed NC machine tool. To improve the performance of the high speed machine tool, it is important to study the thermal characteristics of the motorized spindle. It had been studied in two ways: one is finite element analysis by Ansys software, in which the finite element analysis model was built. According to the actual working condition, the heat source and the heat transfer coefficient of every part are calculated. On this basis, the temperature field and temperature rises were gotten in Ansys software. The other way is temperature rises experiment on the motorized spindle test platform. The result was shown in the form of curve. These two ways shown the same result: the highest temperature rise appears in the area of electromotor, then followed by the rolling bearing .The result provides the necessary theory basis for optimizing the structure of the motorized spindle and establishes a basis for the research and application about the high speed spindle.


2012 ◽  
Vol 204-208 ◽  
pp. 1748-1753
Author(s):  
Jing Cai ◽  
Zong Bao Yue

In the airport pavement design, the critical load position has the guiding significance for the airport pavement slab design. The finite element analysis model of rigid airport pavement is built, and 2-slab model and 9-slab model are analyzed. The corresponding load positions are obtained when the maximum stress and the maximum vertical displacement happen


Sign in / Sign up

Export Citation Format

Share Document