Impact Analysis of Composite Laminate Shell Structures

2015 ◽  
Vol 764-765 ◽  
pp. 1185-1188 ◽  
Author(s):  
Shiuh Chuan Her ◽  
Ching Chun Liao

In this investigation, the methodology for predicting the dynamic response of a composite laminate shell subjected to low velocity impact is presented. A non-linear integro-differential equation is derived and solved by the numerical scheme of Runge-Kutta method to obtain the time history of the contact force at the impact point of the shell. The contact force is then taken as external force acting on the apex of the shell and solved by the finite element method. The results are validated with the numerical calculation published in the literature.

2008 ◽  
Vol 22 (09n11) ◽  
pp. 1349-1354 ◽  
Author(s):  
SHIUH-CHUAN HER ◽  
CHING-CHUAN LIAO

In this paper, a solution method for the response of a thin shell structure subjected to low velocity impact by a sphere is presented. The governing equation of the impact process is obtained by simultaneously solving the equations of motions for the sphere and shell. The derivation is based on the explicit expression of the displacement of the mid-surface of the shell under a single impulse load acting normal to apex of the shell. Incorporating the theory of convolution and Hertz contact law, a non-linear integro-differential equation in terms of the indentation of the contact, for the impact process is derived. The non-linear integro-differential equation is solved by the numerical scheme of Runge-Kutta method to obtain the time history of the contact force at the impact point of the shell. The contact force is then applied on the apex of the shell, the dynamic responses of the shell including the displacement and stress are obtained by the finite element method. The results are validated with the experimental test and numerical calculation published in the literatures. The effects of the radius and velocity of the impactor on the impact response is investigated through parametric study.


2019 ◽  
Vol 8 (4) ◽  
pp. 6002-6006

Filament winded composite pipes are used in various environments conditions for different applications. In this study filament winded hybrid (Glass/Carbon/Epoxy) composite pipes with interwoven (CG90/CG60) orientation were tested under various low velocity impact conditions for two different thickness. Internal diameter as 50 mm with various thicknesses such as 4 mm, 6mm are used to study the effect of impact. The impact test conducted at three different energy levels as 20 J, 25 J and 30 J. Effect of impact on these pipes were measured by the comparison of energy absorption, force and deformation values. The results shows that increasing thickness of specimens increase maximum load carrying capacity and reduces the energy absorption and deformation of impacted specimens


2019 ◽  
Vol 812 ◽  
pp. 17-24
Author(s):  
Mario Emanuele de Simone ◽  
Francesco Ciampa ◽  
Michele Meo

This research work presents a hierarchical method able to reconstruct the time history of the impact force on a composite wing stringer-skin panel by using the structural responses measured by a set of surface bonded ultrasonic transducers. Time reversal method was used to identify the impact location by the knowledge of structural responses recorded from a set of excitation points arbitrarily chosen on the plane of the structure. Radial basis function interpolation approach was then used to calculate the transfer function at the impact point and reconstruct the impact force history. Experimental results showed the high level of accuracy of the proposed impact force reconstruction method for a number of low-velocity impact sources and energies.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Mohammed Salih Hassan ◽  
Haideer Taleb Shomran ◽  
Abbas Allawi Abbas ◽  
Bashar Dheyaa Hussein Al-Kasob ◽  
Manar Hamid Jasim ◽  
...  

Purpose The purpose of this paper is to investigate the effect of graphene platelets (GPLs) on the low-speed contact between a mass and surface of a multi-layer polymer beam. Design/methodology/approach This problem is primarily organized by first-order shear deformation beam theory and nonlinear Hertz rule. GPLs are distributed along the beam thickness direction. The Halpin–Tsai micromechanics model is applied for computing the effective Young’s modulus of the GPLs/polymer composites. In the formulation process, the principle of conservation of energy is first used and the histories of results are extracted using the separation of variables and Runge–Kutta method. Findings In comparing the responses with the available data, a good agreement is observed. The effects of the weight fraction and distribution pattern on the impact response of polymer beam reinforced with GPLs are studied. Results show that contact force is increased, contact time and beam recess are decreased with increasing of weight fraction of GPLs. Also, among the different distribution patterns, the contact force depended on value of GPLs at the point of contact. Originality/value The effects of GPLs addition on the multi-layer polymer beam has a novelty in impact problems.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
J. T. Ruan ◽  
F. Aymerich ◽  
J. W. Tong ◽  
Z. Y. Wang

The delamination buckling and growth behaviors of a cross-ply composite laminate with damage induced by low velocity impact are investigated optically using three-dimensional digital image correlation (3D-DIC) method. For the 3D deformation measurement, the 3D-DIC setup comprised of two CCD cameras was adopted. The rectangle specimen was impacted under the impact energy of 7.0 J using a drop-weight testing machine, and the impact damage was detected by means of X-ray nondestructive evaluation (NDE) technique. The 3D deformation field measured with the optical system clearly reveals that the delamination buckling characteristic of the specimen mainly appears local deformation mode under compression after impact test. Moreover, the behavior of delamination growth evaluated by the 3D-DIC optical method reasonably agrees with the NDE observed damage result after compression.


Materials ◽  
2005 ◽  
Author(s):  
S. Bernhardt ◽  
M. Ramulu ◽  
A. S. Kobayashi

The low-velocity impact response of a hybrid titanium composite laminate (HTCL), known as TiGr, was compared to that of graphite/epoxy composite. The TiGr material comprised of two outer plies of titanium foil surrounding a composite core. The composite core was PIXA-M (a high temperature thermoplastic) reinforced by IM-6 graphite fibers and consolidated by an induction heating process. The impact response of TiGr was characterized by two modes of failure which differed by failure or non-failure in tension of the bottom titanium ply. The ductility of titanium caused buckling by yielding whereas the brittle adjacent composite ply lead to fracture. The maximum failure force of the material correlated well with the previously reported static flexural data, and the material outperformed the commonly used graphite/epoxy.


2011 ◽  
Vol 110-116 ◽  
pp. 632-636
Author(s):  
K. Pazhanivel ◽  
G.B. Bhaskar ◽  
S. Arunachalam ◽  
V. Hariharan ◽  
A. Elayaperumal

Composite materials have a number of properties that make them attractive for use in aerospace applications. The impact behavior of fiber reinforced composite materials is much more complex than conventional metallic structures due to a number of different failure modes on the inter laminar and intra laminar level. The aim of this study is to investigate the effects of temperature and thermal residual stresses on the impact behavior and damage of glass/epoxy laminated composites. To this end, thermal stress analyses of the laminates with lay-ups [90/0/0/90] s, [90/0/45/45] s, [0/90/45/-45] s, [45/0/-45/90] s are carried out under different temperatures by using ANSYS software. Also, the impact analysis on the laminated composites was performed at the different range of impact energies under different temperatures. The specific energy values and impact parameters were obtained and compared for each type of specimens and temperatures.


2018 ◽  
Vol 917 ◽  
pp. 218-222 ◽  
Author(s):  
Sonika Sahu ◽  
Mohd Zahid Ansari ◽  
Chong Du Cho

Numerical simulation is performed to study the deformation and failure modes of Al 1100 plate of 2.4 mm thickness, subjected to low-velocity impact. Blunt and hemispherical nose shaped impactors are used in this study. The quasi-static tensile test is performed at a strain rate of 0.01/s to obtain the Johnson-Cook material parameters which are used in numerical simulation software, ABAQUS/CAE to perform impact analysis. Mesh convergence study is carried out to decide the appropriate number of elements for numerical analysis. The impact behavior of Al 1100 plate for each impactor shapes are studied at 22 J impact energy. Result indicate that increased in the nose radius of impactor will increase the amount of deformation energy for aluminium plate.


2020 ◽  
Vol 54 (21) ◽  
pp. 2999-3007
Author(s):  
Hüseyin E Yalkın ◽  
Ramazan Karakuzu ◽  
Tuba Alpyıldız

The aim of the study is to investigate the behavior of laminated composites under low velocity impact both experimentally and numerically. With this aim, the effects of wide range impact energy values between 10 J and 60 J were evaluated experimentally and numerically for the laminate of [±45/(0/90)2]S oriented unidirectional E-glass as reinforcing material and epoxy resin for matrix material. Different impactor velocities were used to maintain the impact energy values and experimental impact tests were generated with drop weight impact testing machine at room temperature. Numerical simulations were performed using LS-DYNA finite element analysis software with a continuum damage mechanics-based material model MAT058. Contact force between impactor and laminate, and transverse deflection at the center of laminate results were obtained as a function of time and used to plot contact force–time curves, contact force–deflection curves and absorbed energy-impact energy curves. Also, delamination area was examined. Finally, numerical results were compared with experimental results and a good correlation between them was observed.


Author(s):  
G. Balaganesan ◽  
V. Akshaj Kumar ◽  
V. C. Khan ◽  
S. M. Srinivasan

This paper presents the energy absorption of target materials with combinations of polyurethane (PU) foam, PU sheet, SiC inserts, and SiC plate bonded to glass fiber reinforced composite laminate backing during impact loading. SiC inserts and SiC plates are bonded as front layer to enhance energy absorption and to protect composite laminate. The composite laminates are prepared by hand lay-up process and other layers are bonded by using epoxy. Low-velocity impact is conducted by using drop mass setup, and mild steel spherical nosed impactor is used for impact testing of target in fixed boundary conditions. Energy absorption and damage are compared to the target plates when subjected to impact at different energy levels. The energy absorbed in various failure modes is analyzed for various layers of target. Failure in the case of SiC inserts is local, and the insert under the impact point is damaged. However, in the other cases, the SiC plate is damaged along with fiber failure and delamination on the composite backing laminate. It is observed that the energy absorbed by SiC plate layered target is higher than SiC inserts layered target.


Sign in / Sign up

Export Citation Format

Share Document