Photoluminescence and Recombination Mechanisms in Nitride-Based Multiple Quantum Wells

2015 ◽  
Vol 764-765 ◽  
pp. 1250-1254
Author(s):  
Ya Fen Wu ◽  
Jiunn Chyi Lee

The InGaN/AlGaN multiple-quantum-well heterostructures were fabricated by metal-organic chemical vapor deposition system with different indium and aluminum content during the growth of InGaN well layers and AlGaN barrier layers. Temperature-and incident-power-dependent photoluminescence were carried out to examine the recombination mechanisms in the heterostructures. Both of the localization effect and quantum-confined Stark effect are considered. From the experimental and theoretical analysis, the dependence of optical characteristics on the temperature and incident-power are consistent with the recombination mechanisms involving band-tail states and the screen of quantum-confined Stark effect.

1998 ◽  
Vol 184-185 ◽  
pp. 732-736 ◽  
Author(s):  
Takeshi Nagano ◽  
Ichirou Nomura ◽  
Masaru Haraguchi ◽  
Masayuki Arai ◽  
Hiroshi Hattori ◽  
...  

2018 ◽  
Vol 934 ◽  
pp. 8-12
Author(s):  
Jian Guo Zhao ◽  
Xiong Zhang ◽  
Jia Qi He ◽  
Shuai Chen ◽  
Zi Li Wu ◽  
...  

A serious of non-polar a-plane AlGaN-based multiple quantum wells (MQWs) were successfully grown on the semi-polar r-plane sapphire substrate with metal organic chemical vapor deposition technology. Intense MQWs-related emission peaks at an emission wavelength covered from 277-294 nm were observed based on the photoluminescence measurement. It was found that the employment of the trimethyl-aluminum (TMAl) flow duty-ratio modulation method which was developed based on the two-way pulsed-flows growth technique played a crucial role to control the Al composition of the non-polar a-plane AlGaN epi-layers. The non-polar a-plane AlGaN-based MQWs were deposited with the new developed TMAl flow duty-ratio modulation technique. Evident-3th order X-ray diffraction (XRD) satellite peak was observed from the high resolution-XRD measurement, proving the successful growth of non-polar a-plane AlGaN-based MQWs with abrupt hetero-interfaces.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Hung-Pin Hsu ◽  
Pong-Hong Yang ◽  
Jeng-Kuang Huang ◽  
Po-Hung Wu ◽  
Ying-Sheng Huang ◽  
...  

We report a detailed characterization of a Ge/Si0.16Ge0.84multiple quantum well (MQW) structure on Ge-on-Si virtual substrate (VS) grown by ultrahigh vacuum chemical vapor deposition by using temperature-dependent photoreflectance (PR) in the temperature range from 10 to 300 K. The PR spectra revealed a wide range of optical transitions from the MQW region as well as transitions corresponding to the light-hole and heavy-hole splitting energies of Ge-on-Si VS. A detailed comparison of PR spectral line shape fits and theoretical calculation led to the identification of various quantum-confined interband transitions. The temperature-dependent PR spectra of Ge/Si0.16Ge0.84MQW were analyzed using Varshni and Bose-Einstein expressions. The parameters that describe the temperature variations of various quantum-confined interband transition energies were evaluated and discussed.


Sign in / Sign up

Export Citation Format

Share Document