Investigation of Microstructure and Mechanical Properties of Resistance Spot Welded Dissimilar Joints Between Ferritic Stainless Steel and Weathering Steel

2015 ◽  
Vol 766-767 ◽  
pp. 770-779 ◽  
Author(s):  
A Subrammanian ◽  
D.B. Jabaraj ◽  
V.K. Bupesh Raja

Resistance spot welding is widely used in automobile and rail car manufacturing industries. In this research work, resistance spot welded dissimilar joints of ferritic stainless steel and weathering steel sheets is investigated for mechanical and metallurgical properties. Ferritic stainless steel AISI 409M and weathering steel corten A (ASTM A 242) of 2mm thickness were used in this work. Spot welding was done at different current values, keeping other parameters such as electrode force, electrode tip diameter and weld time as constant. Test specimens were subjected to tensile shear test and micro hardness test to assess the mechanical properties of the weld joints. The influence of welding current on nugget growth, fusion zone hardness, peak load, and failure energy and failure mode during tensile shear test, was investigated at various current ratings. The results showed that, with increasing value of current, peak load increased correspondingly. Nugget shape was found to be near symmetrical. Nugget diameter was found to be increasing with increase in current, in expulsion free welds. Interfacial mode of failure was noticed at low current values, whereas, at higher current values, pull out mode of failure was observed. Presence of martensite was observed in the fusion zone. Micro hardness values at fusion zone were found to be more than that of both heat affected zones and base metals.

Author(s):  
Murat Onsekiz ◽  
Yahya Altunpak

In this study, AISI 430 ferritic stainless steel sheet with 0.6 mm thickness was joined by resistance spot welding using different electrode materials. The effects of electrode materials and welding parameters on the mechanical properties of welded samples are defined in terms of peak load. The hardness and tensile shear load bearing capacity of welded joint was determined and the microstructure of welded samples was also evaluated. The most suitable welding parameters for each electrode material were determined.


2011 ◽  
Vol 216 ◽  
pp. 666-670 ◽  
Author(s):  
Prachya Peasura

This research was study the effect of resistance spot welding process on physical properties. The specimen was austenitic stainless steel sheet of 1 mm. The experiments with 23 factorial design. The factors used in this study are welding current at 8,000 and 12,000 Amp, welding time at 8 and 12 cycle and electrode force were set at 1.5 and 2.5 kN. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999 and macro structure testing according to JIS Z 3139: 1978. The result showed that the welding current, welding time and electrode force had interaction on tensile shear and nugget size at 95% confidential (P value < 0.05). Factors affecting the tensile shear are the most welding current of 12,000 amp., welding time of 8 cycle and electrode force of 2.5 kN. were tensile shear of 9.83 kN. The nugget size was maximum at 7.15 mm. on welding current of 12,000 amp., welding time of 12 cycle and electrode force of 1.5 kN This research can bring information to the foundation in choosing the appropriate parameters to resistance spot welding process.


2011 ◽  
Vol 52-54 ◽  
pp. 2176-2180
Author(s):  
Prachya Peasura

This research was to effect of electrode force on the tensile shear and nugget size of the resistance spot welding. The specimen was austenitic stainless steel 304 grade sheet metal 1.2 mm thickness. The electrode force are 1, 1.5, 2.0, 2.5, and 3.0 kN apply to the specimen. The replications in each treatment are 20 follow JIS Z 3136:1999 and JIS Z 3139:1978. Factor control, welding current 7 kA., time current flow 7 cycle and electrode tip diameter 6 mm. The welded specimens were tested by tensile shear testing according to JIS Z 3136: 1999, macro structure testing according to JIS Z 3139: 1978 and analysis results by using One-way ANOVA .The result showed that electrode force had affected on tensile shear and nugget size at 95% confidential (P value > 0.05). The low force induced the gab between specimen increasing then the current flow difficult to pass and both of gab between specimen and nugget seize had increase (Q=I2Rt). When the resistance increased so that fusion zone will have a high heating. It had affected to nugget size, heat affected zone and mechanical properties decreasing. The electrode forces are complete 2.5 kN. tensile shear 9.21 kN and nugget size 5.82 mm. The data can be applied to be used as process monitoring of resistance spot weld quality


2013 ◽  
Vol 652-654 ◽  
pp. 2326-2329 ◽  
Author(s):  
Hui Liu ◽  
Xue Dong Xu ◽  
Xiao Qing Zhang

The experimental investigations on resistance spot welding are presented for 316 stainless steel. The influence of spot welding parameters (welding time, electrode force and welding current) on the tensile shear load and the diameter of nugget have been researched, based on an orthogonal test and analysis method. The results show that welding current has significant influence on the tensile shear load and diameter of nugget, and then is electrode force, welding time in turn. The optimum parameters are as follows: welding time is 5 cycles, electrode force is 3.5KN and welding current is 5.5KA. And the maximum tensile shear force of joint is up to 13.55KN.


2021 ◽  
Author(s):  
Paranthaman V ◽  
Shanmuga Sundaram K ◽  
L Natrayan

Abstract This research investigates the effect of SiC wt% on mechanical and microstructure behavior of transformation induced plasticity (TRIP) 780 steels by resistance spot welding. The resistance spot welded samples were characterized for their properties such as hardness, tensile shear, scanning electron microscope, X-ray diffraction, ductility ratio and elongation. Results showed that the width of the nugget was closely associated with shear failure of the spot welds. X-ray diffraction analysis illustrated that the weld steels chemical composition improved in the heat-affected zones and retained austenite detected due to the influence of Si and C. Sample 4 microstructure exposed the equiaxed dimple and finer dendrites in the fusion zone. It also exhibited maximum force and fracture energy. Nano hardness was significantly decreased in the fusion zone of sample 4 due to the interface among micro alloying elements and the formation of nonmetallic presences that affected the TRIP steel hardness. Low ductility ratios were observed in steel 4 than the other weld steels due to higher tensile shear strength (TSS) and cross-tension strength (CTS) results. Fracture analysis exhibited ductile fracture with dimples and dendrites in the TRIP steels surface. The spot-welded samples mechanical properties are correlated to chemical elements, mainly Si existing in casted TRIP steels through the cooling phase of the resistance spot welding process.


2009 ◽  
Vol 83-86 ◽  
pp. 1205-1211 ◽  
Author(s):  
Majid Pouranvari ◽  
Pirooz Marashi

Resistance spot welding is the dominant process for joining sheet metals in automotive industry. Even-thickness combinations are rarely used in practice; therefore, there is clearly a practical need for failure behaviour investigation of uneven-thickness resistance spot welds. The aim of this paper is to investigate and analyze the failure mode and failure mechanism of dissimilar thickness low carbon steel resistance spot welds during tensile-shear overload test. Microstructural investigations, microhardness tests and tensile-shear tests were conducted. Mechanical properties of the joint were described in terms of peak load, energy absorption and failure mode. It was concluded that weld nugget size and the strength of the thinner base metal are the controlling factors of the peak load and energy absorption of dissimilar thickness spot welds.


2016 ◽  
Vol 1137 ◽  
pp. 15-23 ◽  
Author(s):  
Rupinder Singh ◽  
R. Sharma

The aim of this study is to investigate the effect of cryogenic treated electrodes on the sensitization of ‘304 SS’ in resistance spot welding (RSW). An approach to model sensitization based upon the weld properties like: hardness, tensile-shear strength (T-S), while RSW of 304SS has been proposed and applied. Relationship between hardness, T-S and other parameter has been deduced by using Taguchi L9 orthogonal array (OA). The results indicate that for sensitization; coolant flow rate (CFR), weld time and voltage contributes significantly in RSW of SS.


Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 802
Author(s):  
Imtiaz Ali Soomro ◽  
Srinivasa Rao Pedapati ◽  
Mokhtar Awang

Resistance spot welding (RSW) of dual phase (DP) steels is a challenging task due to formation of brittle martensitic structure in the fusion zone (FZ), resulting in a low energy capacity of the joint during high-rate loading. In the present study, in situ postweld heat treatment (PWHT) was carried out by employing a double pulse welding scheme with the aim of improving the mechanical performance of DP590 steel resistance spot weld joint. Taguchi method was used to optimize in situ PWHT parameters to obtain maximum peak load and failure energy. Experiments were designed based on orthogonal array (OA) L16. Mechanical performance was evaluated in terms of peak load and failure energy after performing low dynamic tensile shear (TS) test. Microstructural characterization was carried out using a scanning electron microscope (SEM). The results show that improvements of 17 and 86% in peak load and failure energy, respectively, were achieved in double-pulse welding (DPW) at optimum conditions compared to traditional single-pulse welding (SPW). The improvement in mechanical performance resulted from (i) enlargement of the FZ and (ii) improved weld toughness due to tempering of martensite in the FZ and subcritical heat affected zone (SCHAZ). These factors are influenced by heat input, which in turn depends upon in situ PWHT parameters.


Sign in / Sign up

Export Citation Format

Share Document