Mathematical Model and Performance Evaluation for a Small Orbital Launcher

2015 ◽  
Vol 772 ◽  
pp. 388-394
Author(s):  
Teodor Viorel Chelaru ◽  
Adrian Chelaru

The purpose of this paper is to present some aspects regarding the computational model and simulation for three stage launch vehicle (LV) used to inject in orbit small size payload. The computational model consists in numerical simulation of LV evolution for imposed start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, end evaluate his performance using the developed model. From technical point of view, the paper is focused on ESA project “Study – concept, to achieve a Small Orbital Launcher through zonal cooperation - SOL

2016 ◽  
Vol 841 ◽  
pp. 278-285 ◽  
Author(s):  
Teodor Viorel Chelaru ◽  
Adrian Chelaru

The purpose of this paper is to present some aspects regarding the computational model and performance evaluation for three stages launch vehicle (LV) used to inject into circular orbit a small size payload. The computational model consists in numerical simulation of LV evolution for imposed start conditions and optimisation of flight parameter in order to obtain injection into circular orbit. The launcher model presented will be with three degrees of freedom (3DOF) and variable mass. The results analysed will be the flight parameters and the ballistic performances. The discussions area will focus around the technical possibility to evaluate the performance of a small multi-stage launcher using the developed model. From a technical point of view, the paper is focused on ESA project “Study – concept, to achieve a Small Orbital Launcher through zonal cooperation – SOL” finalised in 2015


2014 ◽  
Vol 555 ◽  
pp. 32-39 ◽  
Author(s):  
Teodor Viorel Chelaru ◽  
Valentin Pana ◽  
Adrian Chelaru

The purpose of this paper is to present some aspects regarding the computational model and technical solutions for multistage suborbital launcher for testing (SLT) used to test spatial equipment and scientific measurements. The computational model consists in numerical simulation of SLT evolution for different start conditions. The launcher model presented will be with six degrees of freedom (6DOF) and variable mass. The results analysed will be the flight parameters and ballistic performances. The discussions area will focus around the technical possibility to realize a small multi-stage launcher, by recycling military rocket motors. From technical point of view, the paper is focused on national project “Suborbital Launcher for Testing” (SLT), which is based on hybrid propulsion and control systems, obtained through an original design. Therefore, while classical suborbital sounding rockets are unguided and they use as propulsion solid fuel motor having an uncontrolled ballistic flight, SLT project is introducing a different approach, by proposing the creation of a guided suborbital launcher, which is basically a satellite launcher at a smaller scale, containing its main subsystems. This is why the project itself can be considered an intermediary step in the development of a wider range of launching systems based on hybrid propulsion technology, which may have a major impact in the future European launchers programs. SLT project, as it is shown in the title, has two major objectives: first, a short term objective, which consists in obtaining a suborbital launching system which will be able to go into service in a predictable period of time, and a long term objective that consists in the development and testing of some unconventional sub-systems which will be integrated later in the satellite launcher as a part of the European space program. This is why the technical content of the project must be carried out beyond the range of the existing suborbital vehicle programs towards the current technological necessities in the space field, especially the European one.


2019 ◽  
Vol 304 ◽  
pp. 07014
Author(s):  
Teodor-Viorel Chelaru ◽  
Valentin Pana ◽  
Alexandru Iulian Onel ◽  
Tudorel-Petronel Afilipoae ◽  
Andrei Filip Cojocaru ◽  
...  

The paper presents aspects regarding wind influence in dynamics of the three stages micro-launcher. The work is focus on atmospheric turbulence, with dedicated linear model based on characteristics correlation functions, that can be attached to the rigid body model with six degrees of freedom. The results analyzed will be the flight parameters of the launcher, with the wind influence. The novelty of the paper consists in dedicated wind models developed and their implementation in six degrees of freedom micro-launcher model.


2019 ◽  
Vol 304 ◽  
pp. 07013
Author(s):  
Teodor-Viorel Chelaru ◽  
Valentin Pana ◽  
Alexandru Iulian Onel ◽  
Tudorel-Petronel Afilipoae ◽  
Andrei Filip Cojocaru ◽  
...  

The paper presents aspects regarding flexible model used for describing the dynamics of the three stages micro-launcher. This work analyses transverse flexible oscillations. By the hypotheses adopted, the flexibility problem will be reduced to a group of equations that will be attached to the rigid body model with six degrees of freedom, thus obtaining an elastic model for the launcher. The results analysed will be the flight parameters the launcher, with the influence of the elastic modes considered. The novelty of the paper consists in highlighting the influence of elasticity on the launcher control problem.


1999 ◽  
Vol 122 (4) ◽  
pp. 803-812 ◽  
Author(s):  
Jonghoon Park ◽  
Wankyun Chung

Industrial manipulators are under various limitations against high quality motion control; for example, both frictional and dynamic disturbances should be dealt with a simple PID control structure. A robust linear PID motion controller, called the reference error feedback (REF), is proposed, which solves the nonlinear L2-gain attenuation control problem for robotic manipulators. The stability, robustness, and performance tuning of the proposed controller are analyzed. Making use of the fact that the single parameter of the induced L2-gain γ controls the performance with stability attained, we propose a simple and stable method of performance tuning called “the square law.” The analytical results are verified through experiments of a six-degrees-of-freedom industrial manipulator. [S0022-0434(00)00104-0]


2011 ◽  
Vol 2 (1) ◽  
pp. 9-15 ◽  
Author(s):  
C. Meijneke ◽  
G. A. Kragten ◽  
M. Wisse

Abstract. The Delft Hand 2 (DH-2) is an underactuated robot hand meant for industrial applications, having six degrees of freedom (DoF), one actuator (DoA) and no sensors. It was designed to provide a cheap and robust hand to grasp a large range of objects without damaging them. The goal of this paper is to assess the design and performance of the DH-2, demonstrating how the design was optimized for its intended application area and how the hand was simplified to make it commercially attractive. Performance tests show that the DH-2 has a payload of 2 kg for an object range of 60 to 120 mm, it can close or open within 0.5 s, and it only uses open-loop control by means of the input voltage of the motor. The results demonstrate that the industrial need of a simple, cheap and effective robotic hand can be achieved with the principle of underactuation and the use of conventional components. This paper was presented at the IFToMM/ASME International Workshop on Underactuated Grasping (UG2010), 19 August 2010, Montréal, Canada.


Author(s):  
T. Binazadeh ◽  
M. J. Yazdanpanah ◽  
M. H. Shafiei

The first step in designing a control system for a rigid body is to understand its dynamics. Underwater vehicle dynamics may be complex and difficult to model, mainly due to difficulties in observing and measuring actual underwater vehicle hydrodynamics response. This paper is concerned with structure selection of nonlinear polynomials in a Volterra polynomial basis function neural network and recursive parameter estimation of the selected model, in order to obtain a model of a variable mass underwater vehicle with six degrees of freedom using an input-output data set. The simulation results reveal the efficiency of the approach.


2013 ◽  
Vol 61 (2) ◽  
pp. 475-484 ◽  
Author(s):  
L. Baranowski

Abstract In the paper the three different mathematical models of motion of a spin-stabilized, conventional artillery projectile, possessing at least trigonal symmetry, have been introduced. The vector six-degrees-of-freedom (6-DOF) differential equations of motion are an updated edition of those published by Lieske and McCoy and are consistent with STANAG 4355 (Ed. 3). The mathematical models have been used to developing software for simulating the flight of the Denel 155mm Assegai M2000 series artillery projectile and to conduct comprehensive research of the influence of the applied model and integration step on the accuracy and time of computation of projectile trajectory.


2007 ◽  
Vol 16 (5) ◽  
pp. 471-487 ◽  
Author(s):  
Barbara Deml

The overall aim of this work is to provide some guidelines for the design of tele-presence systems from a human factors point of view. Developers of such human-machine systems face at least two major problems: There are hardly any standard input devices, and guiding design principles are almost missing. Further, most often telepresence systems should enable both a high degree of performance and a high sensation of presence, and yet the relationship between these two variables is still a subject of research. To cope with some of the problems, two experimental studies are presented. Each focuses on a different aspect of interface design, which is of widespread interest in the field of telepresence systems. The first is related to the control of multiple degrees of freedom and the second refers to bimanual input control. Beyond this work, a meta-analytical study is presented to describe the relationship between presence and performance more precisely. Certainly there are more issues that have to be studied (e.g., perceptual aspects) to guide the design of telepresence systems. To provide a framework for these and further human factor aspects, a computer based design guide is suggested at the end. This tool addresses system developers and assists in realizing new interfaces more effectively.


2014 ◽  
Vol 24 (2) ◽  
pp. 207-234 ◽  
Author(s):  
Radosław Ładziński

Abstract Taking as a starting point the law of conservation of the total energy of the system, and introducing two basic state functions - the Lagrangian and the Rayleigh function, the general form of the equation of motion for any dynamic system with a finite number of degrees of freedom is derived. The theory is illustrated by considering the rotating - type electromechanical energy converter with six degrees of freedom being the model of all essentially important types of DC and AC machines, including rotating power amplifiers, induction - and synchronous type motors - all of them discussed from both, the steady-state and the transient point of view. In the next part of the paper there is described a simple electric circuit with its model characterized by the holonomic constraints of the velocity-type. Finally, there is presented the kinematics and dynamics of the interesting mechanical system - the gyroscope placed on the rotating Earth.


Sign in / Sign up

Export Citation Format

Share Document