scholarly journals Experimental Investigation on Ethanol-Petrol Blends Operating with a Petrol Engine: An Overview

2015 ◽  
Vol 773-774 ◽  
pp. 465-469
Author(s):  
Nazrul Atan ◽  
Azizul Mokhtar ◽  
Najib Rahman ◽  
Amir Khalid

The use of biopetrol fuel as alternative fuels in gasoline engine has been around for many years and Ethanol-petrol has the potential to be used as alternative fuel that can reduce the total CO2emission from internal petrol engine. However, the changes of bio-petrol is a very complex and need further understanding for researchers due to the relevance of the increase in the petroleum price and the future environmental regulation. This review paper focuses to ascertain a new approach in potential on ethanol-petrol blends operating with a petrol engine especially the effects of ethanol gas petrol blending ratio and variant types of ethanol on performance and emissions of petrol engine. It is shown that the variant in biopetrol blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. This paper presents on a review on three different types of ethanol like sugar cane, wheat and corn with various blended rates. Investigation framework study on how to complete the research is also included in this paper.Keywords: biopetrol, petrol engine, performance, emissions, biopetrol fuel properties

2015 ◽  
Vol 773-774 ◽  
pp. 123-128 ◽  
Author(s):  
N.H. Abdullah ◽  
M.N. Irwan ◽  
Al Emran Ismail

The use of biopetrol fuel as alternative fuels in gasoline engine has been around for many years and Ethanol-petrol has the potential to be used as alternative fuel that can reduce the total CO2 emission from internal petrol engine. However, the changes of bio-petrol is a very complex and need further understanding for researchers due to the relevance of the increase in the petroleum price and the future environmental regulation. This review paper focuses to ascertain a new approach in potential on ethanol-petrol blends operating with a petrol engine especially the effects of ethanol gas petrol blending ratio and variant types of ethanol on performance and emissions of petrol engine. It is shown that the variant in biopetrol blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. This paper presents on a review on three different types of ethanol like sugar cane, wheat and corn with various blended rates. Investigation framework study on how to complete the research is also included in this paper.Keywords: biopetrol, petrol engine, performance, emissions, biopetrol fuel properties


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1322
Author(s):  
Simeon Iliev

Air pollution, especially in large cities around the world, is associated with serious problems both with people’s health and the environment. Over the past few years, there has been a particularly intensive demand for alternatives to fossil fuels, because when they are burned, substances that pollute the environment are released. In addition to the smoke from fuels burned for heating and harmful emissions that industrial installations release, the exhaust emissions of vehicles create a large share of the fossil fuel pollution. Alternative fuels, known as non-conventional and advanced fuels, are derived from resources other than fossil fuels. Because alcoholic fuels have several physical and propellant properties similar to those of gasoline, they can be considered as one of the alternative fuels. Alcoholic fuels or alcohol-blended fuels may be used in gasoline engines to reduce exhaust emissions. This study aimed to develop a gasoline engine model to predict the influence of different types of alcohol-blended fuels on performance and emissions. For the purpose of this study, the AVL Boost software was used to analyse characteristics of the gasoline engine when operating with different mixtures of ethanol, methanol, butanol, and gasoline (by volume). Results obtained from different fuel blends showed that when alcohol blends were used, brake power decreased and the brake specific fuel consumption increased compared to when using gasoline, and CO and HC concentrations decreased as the fuel blends percentage increased.


2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Author(s):  
Mustafa Canakci ◽  
Eric Hruby ◽  
Rolf D. Reitz

Homogeneous charge compression ignition (HCCI) is receiving attention as a new low emission engine concept. Little is known about the optimal operating conditions for this engine operation mode. Combustion at homogeneous, low equivalence ratio conditions results in modest temperature combustion products, containing very low concentrations of NOx and PM as well as providing high thermal efficiency. However, this combustion mode can produce higher HC and CO emissions than those of conventional engines. An electronically controlled Caterpillar single-cylinder oil test engine (SCOTE), originally designed for heavy-duty diesel applications, was converted to a HCCI direct-injection gasoline engine. The engine features an electronically controlled low-pressure common rail injector with a 60°-spray angle that is capable of multiple injections. The use of double injection was explored for emission control, and the engine was optimized using fully-automated experiments and a micro-genetic algorithm (μGA) optimization code. The variables changed during the optimization include the intake air temperature, start of injection timing, and split injection parameters (percent mass of the fuel in each injection, dwell between the pulses). The engine performance and emissions were determined at 700 rev/min with a constant fuel flow rate at 10 MPa fuel injection pressure. The results show that significant emissions reductions are possible with the use of optimal injection strategies.


2013 ◽  
Vol 315 ◽  
pp. 20-24 ◽  
Author(s):  
Taib Iskandar Mohamad ◽  
Mark Jermy ◽  
Matthew Harrison

Power reduction when converting a gasoline engine to propane can be mitigated by designing an injection system so the heat required for evaporation of the propane is drawn from the intake air. Air is cooled and densified, resulting in volumetric efficiency increase. LPG sprays were imaged using Mie and LIF imaging techniques from a port fuel injector, and from long and short connecting pipes. Images were taken in an optically-accessed pressure chamber at atmospheric pressure and fuel pressures of 1.5 MPa. Images of the pipe-coupled injection spray show significant evaporation in the pipe, whose amount depend on the length and diameter of the pipe. The duration of the LPG pulse at the manifold end is, for 300mm pipes, five times the original duration at the injector, and even greater for 600mm pipes. The narrow sprays and the amount of evaporation that occurs before the fuel enters the manifold explains the differences in engine torque and in-cylinder mixture temperature with the different systems.


Sign in / Sign up

Export Citation Format

Share Document