scholarly journals A Comparative Study of Reassigned Conventional Wavelet Transform for Machinery Faults Detection

2015 ◽  
Vol 773-774 ◽  
pp. 90-94 ◽  
Author(s):  
Ahmed M. Abdelrhman ◽  
M. Salman Leong ◽  
Lim Meng Hee ◽  
Wai Keng Ngui

Application of Fast Fourier Transform (FFT) in machinery faults detection is known to be only effective if fault is of repetitive in nature and considering severe. While minor and transient faults are usually remain undetected based on vibration spectrum analysis. Wavelet analysis is relatively new technique which is still suffered from inadequately in its time-frequency resolution. In this paper, ahmedrabak_time wavelet is proposed based on the wavelet reassignment technique for Morlet mother wavelet. The proposed wavelet analysis is compared to the conventional wavelet analysis for machinery faults detection based on simulated signal. The results showed that the proposed wavelet has a better resolution than conventional wavelet analysis which could clearly indicate the presence and the location of the fault.

2019 ◽  
Vol 255 ◽  
pp. 02011
Author(s):  
Ahmed M. Abdelrhman ◽  
M. Salman Leong ◽  
Y.H. Ali ◽  
Iftikhar Ahmad ◽  
Christina G. Georgantopoulou ◽  
...  

This paper studies the diagnosis of twisted blade in a multi stages rotor system using adapted wavelet transform and casing vibration. The common detection method (FFT) is effective only if sever blade faults occurred while the minor faults usually remain undetected. Wavelet analysis as alternative technique is still unable to fulfill the fault detection and diagnosis accurately due to its inadequate time-frequency resolution. In this paper, wavelet is adapted and its time-frequency is improved. Experimental study was undertaken to simulate multi stages rotor system. Results showed that the adapted wavelet analysis is effective in twisted blade diagnosis compared to the conventional one.


Geophysics ◽  
2005 ◽  
Vol 70 (6) ◽  
pp. P19-P25 ◽  
Author(s):  
Satish Sinha ◽  
Partha S. Routh ◽  
Phil D. Anno ◽  
John P. Castagna

This paper presents a new methodology for computing a time-frequency map for nonstationary signals using the continuous-wavelet transform (CWT). The conventional method of producing a time-frequency map using the short time Fourier transform (STFT) limits time-frequency resolution by a predefined window length. In contrast, the CWT method does not require preselecting a window length and does not have a fixed time-frequency resolution over the time-frequency space. CWT uses dilation and translation of a wavelet to produce a time-scale map. A single scale encompasses a frequency band and is inversely proportional to the time support of the dilated wavelet. Previous workers have converted a time-scale map into a time-frequency map by taking the center frequencies of each scale. We transform the time-scale map by taking the Fourier transform of the inverse CWT to produce a time-frequency map. Thus, a time-scale map is converted into a time-frequency map in which the amplitudes of individual frequencies rather than frequency bands are represented. We refer to such a map as the time-frequency CWT (TFCWT). We validate our approach with a nonstationary synthetic example and compare the results with the STFT and a typical CWT spectrum. Two field examples illustrate that the TFCWT potentially can be used to detect frequency shadows caused by hydrocarbons and to identify subtle stratigraphic features for reservoir characterization.


2007 ◽  
Vol 46 (02) ◽  
pp. 135-141 ◽  
Author(s):  
H. Nazeran

Summary Objectives : Many pathological conditions of the cardiovascular system cause murmurs and aberrations in heart sounds. Phonocardiography provides the clinician with a complementary tool to record the heart sounds heard during auscultation. The advancement of intracardiac phonocardiography combined with modern digital signal processing techniques has strongly renewed researchers' interest in studying heart sounds and murmurs.The aim of this work is to investigate the applicability of different spectral analysis methods to heart sound signals and explore their suitability for PDA-based implementation. Methods : Fourier transform (FT), short-time Fourier transform (STFT) and wavelet transform (WT) are used to perform spectral analysis on heart sounds. A segmentation algorithm based on Shannon energy is used to differentiate between first and second heartsounds. Then wavelet transform is deployed again to extract 64 features of heart sounds. Results : The FT provides valuable frequency information but the timing information is lost during the transformation process. The STFT or spectrogram provides valuable time-frequency information but there is a trade-off between time and frequency resolution. Waveletanalysis, however, does not suffer from limitations of the STFT and provides adequate time and frequency resolution to accurately characterize the normal and pathological heartsounds. Conclusions : The results show that the wavelet-based segmentation algorithm is quite effective in localizing the important components of both normal and abnormal heart sounds. They also demonstrate that wavelet-based feature extraction provides suitable feature vectors which are clearly differentiable and useful for automatic classification of heart sounds.


2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Shibli Nisar ◽  
Omar Usman Khan ◽  
Muhammad Tariq

Short Time Fourier Transform (STFT) is an important technique for the time-frequency analysis of a time varying signal. The basic approach behind it involves the application of a Fast Fourier Transform (FFT) to a signal multiplied with an appropriate window function with fixed resolution. The selection of an appropriate window size is difficult when no background information about the input signal is known. In this paper, a novel empirical model is proposed that adaptively adjusts the window size for a narrow band-signal using spectrum sensing technique. For wide-band signals, where a fixed time-frequency resolution is undesirable, the approach adapts the constant Q transform (CQT). Unlike the STFT, the CQT provides a varying time-frequency resolution. This results in a high spectral resolution at low frequencies and high temporal resolution at high frequencies. In this paper, a simple but effective switching framework is provided between both STFT and CQT. The proposed method also allows for the dynamic construction of a filter bank according to user-defined parameters. This helps in reducing redundant entries in the filter bank. Results obtained from the proposed method not only improve the spectrogram visualization but also reduce the computation cost and achieves 87.71% of the appropriate window length selection.


2021 ◽  
Vol 4 (3) ◽  
pp. 37-41
Author(s):  
Sayora Ibragimova ◽  

This work deals with basic theory of wavelet transform and multi-scale analysis of speech signals, briefly reviewed the main differences between wavelet transform and Fourier transform in the analysis of speech signals. The possibilities to use the method of wavelet analysis to speech recognition systems and its main advantages. In most existing systems of recognition and analysis of speech sound considered as a stream of vectors whose elements are some frequency response. Therefore, the speech processing in real time using sequential algorithms requires computing resources with high performance. Examples of how this method can be used when processing speech signals and build standards for systems of recognition.Key words: digital signal processing, Fourier transform, wavelet analysis, speech signal, wavelet transform


Author(s):  
Jean Baptiste Tary ◽  
Roberto Henry Herrera ◽  
Mirko van der Baan

The continuous wavelet transform (CWT) has played a key role in the analysis of time-frequency information in many different fields of science and engineering. It builds on the classical short-time Fourier transform but allows for variable time-frequency resolution. Yet, interpretation of the resulting spectral decomposition is often hindered by smearing and leakage of individual frequency components. Computation of instantaneous frequencies, combined by frequency reassignment, may then be applied by highly localized techniques, such as the synchrosqueezing transform and ConceFT, in order to reduce these effects. In this paper, we present the synchrosqueezing transform together with the CWT and illustrate their relative performances using four signals from different fields, namely the LIGO signal showing gravitational waves, a ‘FanQuake’ signal displaying observed vibrations during an American football game, a seismic recording of the M w 8.2 Chiapas earthquake, Mexico, of 8 September 2017, followed by the Irma hurricane, and a volcano-seismic signal recorded at the Popocatépetl volcano showing a tremor followed by harmonic resonances. These examples illustrate how high-localization techniques improve analysis of the time-frequency information of time-varying signals. This article is part of the theme issue ‘Redundancy rules: the continuous wavelet transform comes of age’.


2012 ◽  
Vol 19 (4) ◽  
pp. 585-596 ◽  
Author(s):  
Xinglong Liu ◽  
Zhongwei Jiang ◽  
Zhonghong Yan

Damage localization is a primary objective of damage identification. This paper presents damage localization in beam structure using impact-induced Lamb wave and Frequency Slice Wavelet Transform (FSWT). FSWT is a new time-frequency analysis method and has the adaptive resolution feature. The time-frequency resolution is a vital factor affecting the accuracy of damage localization. In FSWT there is a unique parameter controlling the time-frequency resolution. To improve the accuracy of damage localization, a generalized criterion is proposed to determine the parameter value for achieving a suitable time-frequency resolution. For damage localization, the group velocity dispersion curve (GVDC) of A0Lamb waves in beam is first accurately estimated using FSWT, and then the arrival times of reflection wave from the crack for some individual frequency components are determined. An average operation on the calculated propagation distance is then performed to further improve the accuracy of damage localization.


2014 ◽  
Vol 26 (01) ◽  
pp. 1450007 ◽  
Author(s):  
Xiuling Liu ◽  
Jianli Yang ◽  
Xiaoyu Zhu ◽  
Suiping Zhou ◽  
Hongrui Wang ◽  
...  

QRS complex is the most important part in electrocardiogram (ECG) as it contains the most important information of heart activities. R-peak detection is the first, yet crucial, step in most ECG automatic diagnose methods. Due to the existence of noise in ECG signals and changes in QRS morphology, most existing methods are not robust in different conditions. In the field of intelligent remote health caring, in addition to the detection accuracy, timeliness is also an important research issue. In this paper, wavelet transform and energy window transform are introduced, which form the basis of a novel R-peak detection method. Wavelet transform is used to efficiently reduce noise and highlight useful ECG signal for it has good time-frequency resolution characters, and energy window transform converts time domain signal to energy domain, which makes it easier to isolate QRS complex from other signals. As a result, influence from QRS morphology changes can be effectively alleviated. To validate the effectiveness of this new method, ECG records of MIT-BIH arrhythmia database are used in the experiments. The experiment results show that the proposed method is efficient and robust to noise and QRS morphology changes. The computational cost of the proposed method has also been evaluated.


2011 ◽  
Vol 48-49 ◽  
pp. 555-560 ◽  
Author(s):  
Yang Jin ◽  
Zhi Yong Hao

In this paper, we report the condition to keep the optimal time-frequency resolution of the Gaussian window in the numerical implementation of the short-time Fourier transform. Because of truncation and discretization, the time-frequency resolution of the discrete Gaussian window is different from that of the proper Gaussian function. We compared the time-frequency resolution performance of the discrete Gaussian window and Hanning window based on that they have the same continuous-time domain standard deviation, and generalized the condition under which the time-frequency resolution of the Gaussian window will prevail over that of the Hanning window.


Sign in / Sign up

Export Citation Format

Share Document