Discontinuous Space Vector Modulation Strategy for Three-Level Neutral Point Clamped Inverter

2015 ◽  
Vol 781 ◽  
pp. 435-438
Author(s):  
Kanyarat Ek-Iam ◽  
Yuttana Kumsuwan

This paper presents a discontinuous space vector modulation (SVM) strategy for a three-level neutral point clamped (3L-NPC) inverter. The proposed scheme, calculation switching time of the 3L-NPC inverter is fully described. A mathematical analysis of the duty cycle is determined by utilizing the calculated switching time method. The main advantages of the proposed method are minimization of the number of commutations of switches and reduction of the switching losses. Simulated and calculation results are presented to verify the validity and effectiveness of the proposed modulation scheme.

2017 ◽  
Vol 32 (10) ◽  
pp. 7419-7434 ◽  
Author(s):  
Cungang Hu ◽  
Xinghuo Yu ◽  
Donald Grahame Holmes ◽  
Weixiang Shen ◽  
Qunjing Wang ◽  
...  

2021 ◽  
Author(s):  
Weixing Feng

For most medium voltage high power applications, Neutral Point Clamped (NPC) three-level inverter is a preferred choice due to its advantages such as low cost, light weight and compact size. Space vector modulation is widely used in real-time digital control for power converters. It is especially suitable for use in NPC multilevel inverters due to its good harmonic profile, flexibility and easy digital implementation. This thesis focuses on the space vector modulation for high power three-level NPC inverter, where the switching frequency of the semiconductor devices is nominally below 1 OOOHz to reduce the power loss of the switching devices. The conventional space vector modulation (SVM) scheme for the three-level NPC inverter produces even order harmonics in the output voltages, which are not desirable for most industrial applications. In this thesis, the mechanism of even order harmonic generation is analysed. A new space vector modulation scheme, which can eliminate all the even order harmonics, is proposed. The performance of the new design is investigated and simulation results are provided for the verification purpose. The harmonic and THD profiles are compared with those of the conventional SVM scheme. The elimination of even order harmonics is achieved at the expense of a slight increase in the switching frequency. The proposed space vector modulation scheme can be applied to other types of converters for the even order harmonic elimination. An algorithm is developed to mitigate the neutral point potential deviation, which is a common problem in the NPC inverters. The simulation results show that this algorithm is suitable for both conventional and the proposed space vector modulation schemes.


2021 ◽  
Author(s):  
Weixing Feng

For most medium voltage high power applications, Neutral Point Clamped (NPC) three-level inverter is a preferred choice due to its advantages such as low cost, light weight and compact size. Space vector modulation is widely used in real-time digital control for power converters. It is especially suitable for use in NPC multilevel inverters due to its good harmonic profile, flexibility and easy digital implementation. This thesis focuses on the space vector modulation for high power three-level NPC inverter, where the switching frequency of the semiconductor devices is nominally below 1 OOOHz to reduce the power loss of the switching devices. The conventional space vector modulation (SVM) scheme for the three-level NPC inverter produces even order harmonics in the output voltages, which are not desirable for most industrial applications. In this thesis, the mechanism of even order harmonic generation is analysed. A new space vector modulation scheme, which can eliminate all the even order harmonics, is proposed. The performance of the new design is investigated and simulation results are provided for the verification purpose. The harmonic and THD profiles are compared with those of the conventional SVM scheme. The elimination of even order harmonics is achieved at the expense of a slight increase in the switching frequency. The proposed space vector modulation scheme can be applied to other types of converters for the even order harmonic elimination. An algorithm is developed to mitigate the neutral point potential deviation, which is a common problem in the NPC inverters. The simulation results show that this algorithm is suitable for both conventional and the proposed space vector modulation schemes.


Author(s):  
R. Palanisamy ◽  
A. Velu ◽  
K. Selvakumar ◽  
D. Karthikeyan ◽  
D. Selvabharathi ◽  
...  

This paper deals the implementation of 3-level output voltage using dual 2-level inverter with control of sub-region based Space Vector Modulation (SR-SVM). Switching loss and voltage stress are the most important issues in multilevel inverters, for keep away from these problems dual inverter system executed. Using this proposed system, the conventional 3-level inverter voltage vectors and switching vectors can be located. In neutral point clamped multilevel inverter, it carries more load current fluctuations due to the DC link capacitors and it requires large capacitors. Based on the sub-region SVM used to control IGBT switches placed in the dual inverter system. The proposed system improves the output voltage with reduced harmonic content with improved dc voltage utilisation. The simulation and hardware results are verified using matlab/simulink and dsPIC microcontroller.


Sign in / Sign up

Export Citation Format

Share Document