Burst Strength of Glass Fibre/Epoxy Composite Pipes Subjected to Impact Loading

2015 ◽  
Vol 786 ◽  
pp. 121-125 ◽  
Author(s):  
A. Hawa ◽  
M.S. Abdul Majid ◽  
Mohd Afendi ◽  
M. Haslan ◽  
Krishnan Pranesh ◽  
...  

The main objective of this experimental study was to investigate the effects of low velocity impact loading on the pressure bearing capacity of the E-glass/epoxy composite pipes. The pipes were produced by the conventional filament winding technique comprises of six axisymmetric layers with (±55°)3 winding angles. The specimens were impacted at three different energy levels which are 5 J, 7.5 J, and 10 J using an instrumented drop weight impact testing machine (IMATEK IM10). The samples were then filled with water and subjected to burst test until distinct leakage failure is observed. The results indicate that the peak force and contact time increases with increased of impact energy. For impacted samples, the pressure tests show that the burst strength of the pipes decreases with increase in energy levels during impact loading. During the burst tests, several damage types named leakage and eruption were observed.

2014 ◽  
Vol 695 ◽  
pp. 717-720 ◽  
Author(s):  
A. Hawa ◽  
Mohd Shukry Abdul Majid ◽  
Mohd Afendi ◽  
M. Haslan ◽  
Krishnan Pranesh ◽  
...  

The main objective of this experimental study is to investigate the effects of hydrothermal ageing on the pressure bearing capacity of the E-glass/epoxy composite pipes subjected to impact loadings. The pipes were produced by the conventional filament winding technique comprises of six antisymmetric layers with (±55°)3 winding angles. The pipes were immersed in tab water for period of 500, 1000, and 1500 hours. The specimens were impacted at three different energy levels; 5 J, 7.5 J, and 10 J using an instrumented drop weight impact testing machine (IMATEK IM10). The samples were then subjected to pressure test until distinct leakage failure is observed. The results indicates that peak force and contact time increase with increasing impact energy. The tests results show that the burst pressure decreases with increase in energy levels during impact loading. During the burst tests, several damage types named leakage and eruption were observed.


2018 ◽  
Vol 11 (4) ◽  
pp. 46-52
Author(s):  
Aidel Kadum Jassim Al-shamary

In this study, the effect of low velocity impact  response of Kevlar/carbon hybrid composite has been investigated. Then the impacted specimens were subjected to compression and buckling tests at room temperature experimentally. The height, width and thickness of the specimens are 150, 100 and 2.1 mm, respectively. Impact tests have been performed under different impact energy levels by using low velocity impact testing machine. Compression and buckling tests were conducted by Shimadzu testing machine. According to obtained results, the damage increases by increasing the impact energy level in the subjected specimens to impact test.  Compression strength value is higher about 3  times than buckling strength value.


Author(s):  
Chuwei Zhou ◽  
Zihui Xia ◽  
Qiaoling Yong

Filament winding (FW) is one of the most common techniques for manufacturing composite pipes. The material properties and failure mechanism of composite pipes depend largely on winding pattern. In this study a micro mechanical approach for filament wound composites (FWCs) is pursued. A diamond-shaped repeated unit cell (RUC) is first constructed which characterizes the micro architecture of FWC pipe, such as winding angel, shift between successive circuits and the area of local undulation region. The micro mechanical model is embedded into commercial FEM code of ABAQUS as user-defined subroutine thus the link between the analyses in macro engineering structural scale and in micro material structural scale is established. By averaging micro stiffness constants over the cell macro ones needed for engineering structural analysis can be obtained. On the other hand, the macro structural analysis provides average stresses/strains of the cell locating at any concerned region of the macro structure for local stress and damage analysis. Effects of tow undulation caused by tow crossover on micro stresses are taken into accounted. The model is applied to glass/epoxy wound pipes with various winding angles and winding shifts. Mechanical properties are predicted and damage evolutions are simulated. The effects of delamination damage, usually introduced by lateral low velocity impact, on stiffness and ultimate strength of FWC pipe are also investigated.


2006 ◽  
Vol 306-308 ◽  
pp. 279-284
Author(s):  
Ki Weon Kang ◽  
Jung Kyu Kim ◽  
Heung Seob Kim

The goals of the paper are to identify the impact damage and strength reduction behavior of sandwich structure, composed of carbon/epoxy laminates skin and Nomex core with two kinds of thickness (10 and 20mm). For these, low velocity impact tests were conducted using the instrumented impact-testing machine and damages are inspected by SAM. And then, subsequent static tests are conducted under flexural loading to identify the strength reduction behavior of the impacted sandwich structures. The impact damages are mainly delamination in carbon/epoxy skin and their behavior is mostly independent of core thickness. Also, their energy absorbing behavior is identified through calculating the energy absorbed by impact damage. Finally, the strength reduction behavior is evaluated through Caprino’s model, which was proposed on the unidirectional laminates.


2019 ◽  
Vol 8 (4) ◽  
pp. 6002-6006

Filament winded composite pipes are used in various environments conditions for different applications. In this study filament winded hybrid (Glass/Carbon/Epoxy) composite pipes with interwoven (CG90/CG60) orientation were tested under various low velocity impact conditions for two different thickness. Internal diameter as 50 mm with various thicknesses such as 4 mm, 6mm are used to study the effect of impact. The impact test conducted at three different energy levels as 20 J, 25 J and 30 J. Effect of impact on these pipes were measured by the comparison of energy absorption, force and deformation values. The results shows that increasing thickness of specimens increase maximum load carrying capacity and reduces the energy absorption and deformation of impacted specimens


Author(s):  
Saravanan Mahesh ◽  
Muthukumar Chandrasekar ◽  
R. Asokan ◽  
Yaddula Chandra Mouli ◽  
Katta Sridhar ◽  
...  

Impact resistance is an inevitable characteristic of the composites employed in the high performance structural applications. Due to the growing interest in the use of sisal fibre as reinforcement in the polymer composites, it is required to determine the response of sisal/epoxy composites to low velocity impact at high incident energies where perforation can occur and assess the damage characteristics using a non-destructive technique. In this work, sisal/epoxy composites were subjected to drop weight impact in the velocity range of 3 m/s to 5 m/s at different energy levels between 20 J to 50 J according to the ASTM D7136. Based on the results observed, it is concluded that both the peak load and absorbed energy increased with the increasing incident energy level up to 40 J. At 50 J, perforation occurred and the maximum deformation was approximately 22 mm for the sisal/ epoxy composite. Damage characteristics and failure behaviour of the composite at different incident energies was examined from the visual images of the front and back face of the composite. The quantitative assessment of crack propagation in the sisal/epoxy composite and the damage area were determined from the ultrasonic C-scan images of the sample post impact at various energy levels.


2021 ◽  
Author(s):  
Kasım Karataş ◽  
Okan Özdemir

Honeycomb structures are used where the weight to strength ratio is important. They are also preferred to absorb the energy from the blows received. In this study, low velocity impact behavior of aluminum honeycomb composites with different core thicknesses were investigated. Aluminum honeycombs used in this study are AL3003 honeycombs of 10 mm and 15 mm thicknesses. Glass fiber reinforced epoxy sheets with a thickness of 2 mm were used as the surface sheet material. Composite plates were produced by vacuum infusion method. The upper and lower face plates were cut in dimensions of 100x100 mm. The cut plates were attached to the core material with adhesive and a sandwich structure was formed. After bonding, low velocity impact tests were performed on these test samples at 40J, 100J and 160J energy levels using the composite CEAST Fractovis Plus impact testing machine. According to the results obtained from the impact tests, at higher energy levels, 15 mm thick composites have 10-15% higher energy absorption capacity than 10 mm.


2006 ◽  
Vol 326-328 ◽  
pp. 1793-1796
Author(s):  
Ki Weon Kang ◽  
Seung Yong Yang ◽  
J.H. Kim ◽  
Jung Kyu Kim ◽  
Heung Seob Kim ◽  
...  

This paper deals with the damage behavior of glass/epoxy composite laminates subjected to low-velocity impact at various temperatures. For this goal, the impact tests were performed by using an instrumented impact-testing machine at three temperatures: +20°C, -10°C and -40°C. And the resultant damages were inspected through the scanning acoustic microscope (SAM). Also, based on the impact force history and the damage configuration of the laminates, the impact resistance parameters were employed to evaluate damage resistance of glass/epoxy laminates. As results, it was found that the temperature changes affect the damage resistance capacity of glass/epoxy laminates.


Sign in / Sign up

Export Citation Format

Share Document