Evaluation of Adhesive T-Joint Using Finite Element Analysis

2015 ◽  
Vol 786 ◽  
pp. 37-42 ◽  
Author(s):  
B. Izzawati ◽  
Mohd Afendi ◽  
S. Nurhashima ◽  
A. Nor ◽  
Abdul Rahman Abdullah ◽  
...  

This study evaluates the effect of temperature upon adhesive properties and behavior of adhesively bonded T-joint. Finite element analyses established the effect of this parameter on the durability joint and stress distribution within the adhesive layer. A series of temperatures and stress analyses using finite element analysis (FEA) has been conducted in the T-joint configuration for this purpose. The parametric studies on the FE model revealed that stress distributions are sensitive to the changes in adhesive properties due to changes in temperature. In general, stresses were reduced with changes in the temperature which resulted in the ability of the adhesive layer to undergo plastic deformation.

1978 ◽  
Vol 13 (1) ◽  
pp. 1-10 ◽  
Author(s):  
R D Adams ◽  
J Coppendale ◽  
N A Peppiatt

Axisymmetric butt joints are widely used as specimens for testing the response of adhesives to shear and tensile stresses. When analysing the results from these tests, the stress distributions must be accurately known. A finite-element analysis has been used to examine the effect of non-rigid adherends and a spew fillet in solid and annular butt joints for a range of geometries and adhesive properties. It has been shown that stress concentrations occur in butt joints loaded in tension; in the latter case, the stress concentration is directly due to the presence of the spew fillet.


2020 ◽  
Vol 10 (17) ◽  
pp. 5814
Author(s):  
Shilan Nawzad Dawood ◽  
Abdulsalam Rasheed Al-Zahawi ◽  
Laith Abed Sabri

The objective of this study was to evaluate the biomechanical and thermal behavior of a proposed preparation design as a conservative treatment option that aims to preserve both gingival and tooth health structures through a comparative finite element analysis with non-preparation and conventional designs. 3D solid models of laminate veneers with different preparation designs were obtained using cone-beam computed tomography (CBCT) scanning of the maxillary incisor. A 100-Newton load was applied with angulations of 60° and 125° to the longitudinal axis of the tooth to determine the stresses during mastication. In addition, transient thermal analysis was performed to compare the temperature and thermal distribution of the restored tooth models when subjected to thermal loads of 5 °C and 55 °C. Teeth prepared with the proposed design showed lower stress distributions and a repairable failure mode, followed by the non-preparation design, while teeth prepared with the conventional design showed the highest stress concentrations. Furthermore, cold thermal loading yielded larger thermal stress distributions than hot thermal loading, independent of the preparation type, and the effect of temperature changes were within the critical limit near the pulp and dentin regions. Thus, the preparation design geometry affects the long-term success of laminate restoration, and the proposed design yields more uniform and appropriate stress distributions than the other techniques.


2010 ◽  
Vol 97-101 ◽  
pp. 3920-3923 ◽  
Author(s):  
Xiao Cong He

The influence of adhesive layer thickness on the dynamic behaviour of the single-lap adhesive joints is investigated in this paper. The ABAQUS finite element analysis (FEA) software was used to predict the frequency response functions (FRFs) of the single-lap adhesive joints of different thickness of the adhesive layer. As a reference, the FRFs of a cantilevered beam without joint were investigated as well. It is clear that the FRFs of the four beams are close to each other within the frequency range 0~1000 Hz. It is also found that the composite damping of the single-lap adhesive joint increases as the thickness of the adhesive layer increases.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2021 ◽  
Vol 11 (13) ◽  
pp. 6094
Author(s):  
Hubdar Hussain ◽  
Xiangyu Gao ◽  
Anqi Shi

In this study, detailed finite element analysis was conducted to examine the seismic performance of square and circular hollow steel braces under axial cyclic loading. Finite element models of braces were constructed using ABAQUS finite element analysis (FEA) software and validated with experimental results from previous papers to expand the specimen’s matrix. The influences of cross-section shape, slenderness ratio, and width/diameter-to-thickness ratio on hysteretic behavior and compressive-tensile strength degradation were studied. Simulation results of parametric studies show that both square and circular hollow braces have a better cyclic performance with smaller slenderness and width/diameter-to-thickness ratios, and their compressive-tensile resistances ratio significantly decreases from cycle to cycle after the occurrence of the global buckling of braces.


Author(s):  
Constantine M. Tarawneh ◽  
Arturo A. Fuentes ◽  
Javier A. Kypuros ◽  
Lariza A. Navarro ◽  
Andrei G. Vaipan ◽  
...  

In the railroad industry, distressed bearings in service are primarily identified using wayside hot-box detectors (HBDs). Current technology has expanded the role of these detectors to monitor bearings that appear to “warm trend” relative to the average temperatures of the remainder of bearings on the train. Several bearings set-out for trending and classified as nonverified, meaning no discernible damage, revealed that a common feature was discoloration of rollers within a cone (inner race) assembly. Subsequent laboratory experiments were performed to determine a minimum temperature and environment necessary to reproduce these discolorations and concluded that the discoloration is most likely due to roller temperatures greater than 232 °C (450 °F) for periods of at least 4 h. The latter finding sparked several discussions and speculations in the railroad industry as to whether it is possible to have rollers reaching such elevated temperatures without heating the bearing cup (outer race) to a temperature significant enough to trigger the HBDs. With this motivation, and based on previous experimental and analytical work, a thermal finite element analysis (FEA) of a railroad bearing pressed onto an axle was conducted using ALGOR 20.3™. The finite element (FE) model was used to simulate different heating scenarios with the purpose of obtaining the temperatures of internal components of the bearing assembly, as well as the heat generation rates and the bearing cup surface temperature. The results showed that, even though some rollers can reach unsafe operating temperatures, the bearing cup surface temperature does not exhibit levels that would trigger HBD alarms.


Author(s):  
R. N. Margasahayam ◽  
H. S. Faust

Abstract A finite-element stress analysis of a one-piece, integrated, all-composite shaft and coupling is presented. In addition to a brief discussion of design-driving parameters, some limitations of the analytical techniques used for design development are described. The 3D finite-element method (FEM) was then used to evaluate critical stresses and strains experienced by the shaft coupling. A comparison of the results from the finite-element analysis and those from static bending, axial, and torsional tests conducted on these prototype shafts yielded excellent correlation. Some important considerations in the development of the FE model and the correlation of results with tests, especially in the design of composite materials, are addressed.


Author(s):  
Mikkel L. Larsen ◽  
Vikas Arora ◽  
Marie Lützen ◽  
Ronnie R. Pedersen ◽  
Eric Putnam

Abstract Several methods for modelling and finite element analysis of tubular welded joints are described in various design codes. These codes provide specific recommendations for modelling of the welded joints, using simple weld geometries. In this paper, experimental hot-spot strain range results from a full-scale automatically welded K-node test are compared to corresponding finite element models. As part of investigating the automatically welded K-joint, 3D scans of the weld surfaces have been made. These scans are included in the FE models to determine the accuracy of the FE models. The results are compared to an FE model with a simple weld geometry based on common offshore design codes and a model without any modelled weld. The results show that the FE model with 3D scanned welds is more accurate than the two simple FE models. As the weld toe location of the 3D scanned weld is difficult to locate precisely in the FE model and as misplacement of strain gauges are possible, stochastic finite element modelling is performed to analyse the resulting probabilistic hot-spot stresses. The results show large standard deviations, showing the necessity to evaluate the hot-spot stress method when using 3D scanned welds.


Author(s):  
Phong Phan ◽  
Anh Vo ◽  
Amirhamed Bakhtiarydavijani ◽  
Reuben Burch ◽  
Brian K. Smith ◽  
...  

Abstract Computational approaches, especially Finite Element Analysis (FEA), have been rapidly growing in both academia and industry during the last few decades. FEA serves as a powerful and efficient approach for simulating real-life experiments, including industrial product development, machine design, and biomedical research, particularly in biomechanics and biomaterials. Accordingly, FEA has been a "go-to" high biofidelic software tool to simulate and quantify the biomechanics of the foot-ankle complex, as well as to predict the risk of foot and ankle injuries, which are one of the most common musculoskeletal injuries among physically active individuals. This paper provides a review of the in silico FEA of the foot-ankle complex. First, a brief history of computational modeling methods and Finite Element (FE) simulations for foot-ankle models is introduced. Second, a general approach to build a FE foot and ankle model is presented, including a detailed procedure to accurately construct, calibrate, verify, and validate a FE model in its appropriate simulation environment. Third, current applications, as well as future improvements of the foot and ankle FE models, especially in the biomedical field, are discussed. Lastly, a conclusion is made on the efficiency and development of FEA as a computational approach in investigating the biomechanics of the foot-ankle complex. Overall, this review integrates insightful information for biomedical engineers, medical professionals, and researchers to conduct more accurate research on the foot-ankle FE models in the future.


Sign in / Sign up

Export Citation Format

Share Document