A New Design Concept for Wind Turbine Airfoil

2015 ◽  
Vol 798 ◽  
pp. 8-14
Author(s):  
Kun Ye ◽  
Zheng Yin Ye ◽  
Zhan Qu

Wind energy has been attracting more and more attentions due to its clean and renewable source. The aerodynamic characteristic of wind turbine airfoil directly affects the turbine efficiency. In order to improve the airfoil aerodynamic characteristic, a new concept airfoil configuration for wind turbine is presented. A cave on the upper surface near the trailing edge is designed to generate a trapped vortex in the cave. The trapped vortex is used to stabilize the separated flow when the airfoil at high angle of attack. Combining with the Gurney flap, the airfoil with the cave behaves very good aerodynamic characteristics at wide range of incidences, especially at high angles of attack. The method is used on the well-known FFA-W3-301 turbine airfoil. By using numerical simulation, it is shown that the new airfoil has a higher lift than the original airfoil at the same angle of attack, the stall angle of attack increases from 12 degree to 17 degree, and the maximum lift coefficient increases approximately 64 percents. In addition, the effects of the chord-wise location of starting point of the designed cave are discussed. Therefore, it is believed that the new-designed concept can be investigated and explored further for wind turbine.

2021 ◽  
Vol 6 ◽  
pp. 5
Author(s):  
Nazar Aldabash‎‎ ◽  
Andrew Wandel‎ ◽  
Abdul Salam Darwish‎ ◽  
Jayantha Epaarachchi‎

In this study, a numerical and experimental investigation for the flow separation over 170 mm chord, the NREL S822 aerofoil low Reynolds number wind turbine blade aerofoil section has been investigated at 15.8 m/s wind speed using suction and blowing techniques for the locations between 0.15 and 0.41 of the chord to improve aerodynamic characteristics of a wind turbine rotor blade. In a numerical study, two-dimensional aerofoil (i.e. NREL S822), using Shear Stress Transport (SST (γ − Reθ)) turbulence model, is presented. Careful selection for the number of mesh was considered through an iterative process to achieve the optimum mesh number resulted in optimum values for the ratio of lift to drag coefficients (CL/CD). Values of the lift coefficient, drag coefficient, and separation location were investigated at an angle of attack 18°. Flow separation is monitored and predicted within the numerical results at the tested angles, which has been compared with the experimental results and should a fair agreement. The results revealed that the aerodynamic characteristics of NERL S822 aerofoil would be improved using the suction technique more than the suction and blowing techniques and there is a delay of flow separation with the increase of blowing or suction volumetric flow rate. Using these two techniques and careful selection of the mesh numbers with the right angle of attack can improve the aerofoil characteristics and therefore lead to improve the turbine performance characteristics.


2021 ◽  
Vol 11 (22) ◽  
pp. 10920
Author(s):  
Junjun Jin ◽  
Zhiliang Lu ◽  
Tongqing Guo ◽  
Di Zhou ◽  
Qiaozhong Li

Dynamic stall in clean air flow has been well studied, but its exploration in air–particle (air–raindrop or air–sand) flow is still lacking. The aerodynamic performance loss of aircraft (NACA0012) and wind turbine (S809) airfoils and their differences during the hysteresis loop at different pitching parameters are also poorly understood. As shown in this paper, the reduced frequency has little effect on the value of the maximum lift coefficient increment caused by particles, but a larger one can enhance the hysteresis effect and drag the angle of attack, at which the maximum increment is obtained, from the up stroke to the down stroke. The large lift coefficient increments of two airfoils and their difference also have a similar change trend with the reduced frequency. Compared to that of NACA0012 airfoil, the increments of S809 airfoil are obviously greater at three mean angles of attack, especially at 8°, which is the commonly used operating angle. In addition, the angle of attack, at which the maximum lift coefficient is obtained, can be significantly changed by particles in two regions: one is under the effect of deep stall, the other is under the effect of light stall at a low, reduced frequency.


2021 ◽  
pp. 1-13
Author(s):  
Khaoula Qaissi ◽  
Omer A Elsayed ◽  
Mustapha Faqir ◽  
Elhachmi Essadiqi

Abstract A wind turbine blade has the particularity of containing twisted and tapered thick airfoils. The challenge with this configuration is the highly separated flow in the region of high twist. This research presents a numerical investigation of the effectiveness of a Vortex Trapping Cavity (VTC) on the aerodynamics of the National renewable Energy laboratory (NREL) Phase VI wind turbine. First, simulations are conducted on the S809 profile to study the fluid flow compared to the airfoil with the redesigned VTC. Secondly, the blade is simulated with and without VTC to assess its effect on the torque and the flow patterns. The results show that for high angles of incidence at Rec=106, the lift coefficient increases by 10% and the wake region appears smaller for the case with VTC. For wind speeds larger than 10 m/s, the VTC improves the torque by 3.9%. This is due to the separation that takes place in the vicinity of the VTC and leads to trapping early separation eddies inside the cell. These eddies roll up forming a coherent laminar vortex structure, which in turn sheds periodically out of the cell. This phenomenon favourably reshapes excessive flow separation, reenergizes the boundary layer and globally improves blade torque.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Xiaohua Zou ◽  
Mingsheng Ling ◽  
Wenzheng Zhai

With the development of flight technology, the need for stable aerodynamic and vibration performance of the aircraft in the civil and military fields has gradually increased. In this case, the requirements for aerodynamic and vibration characteristics of the aircraft have also been strengthened. The existing four-rotor aircraft carries limited airborne equipment and payload, while the current eight-rotor aircraft adopts a plane layout. The size of the propeller is generally fixed, including the load capacity. The upper and lower tower layout analyzed in this paper can effectively solve the problems of insufficient four-axis load and unstable aerodynamic and vibration performance of the existing eight-axis aircraft. This paper takes the miniature octorotor as the research object and studies the aerodynamic characteristics of the miniature octorotor at different low Reynolds numbers, different air pressures and thicknesses, and the lift coefficient and lift-to-drag ratio, as well as the vibration under different elastic moduli and air pressure characteristics. The research algorithm adopted in this paper is the numerical method of fluid-solid cohesion and the control equation of flow field analysis. The research results show that, with the increase in the Reynolds number within a certain range, the aerodynamic characteristics of the miniature octorotor gradually become better. When the elastic modulus is 2.5 E, the aircraft’s specific performance is that the lift increases, the critical angle of attack increases, the drag decreases, the lift-to-drag ratio increases significantly, and the angle of attack decreases. However, the transition position of the flow around the airfoil surface is getting closer to the leading edge, and its state is more likely to transition from laminar flow to turbulent flow. When the unidirectional carbon fiber-reinforced thickness is 0.2 mm and the thin arc-shaped airfoil with the convex structure has a uniform thickness of 2.5% and a uniform curvature of 4.5%, the aerodynamic and vibration characteristics of the octorotor aircraft are most beneficial to flight.


2016 ◽  
Author(s):  
Akshay Basavaraj

In regions of low wind speed, overcoming the starting torque of a Vertical Axis Wind Turbine (VAWT) becomes a challenge aspect. In order to overcome this adversity, careful selection of airfoils for the turbine blades becomes a priority. This paper tries to address the issue utilizing an approach wherein by observing the effect of merging two airfoils. Two airfoils which are of varying camber and thickness are merged and their aerodynamic characteristics are evaluated using the software XFOIL 6.96. For a variation in angle of attack from 0 to 90°, aerodynamic analysis is done in order to observe the behavior of one quarter of the entire VAWT cycle. An objective function is developed so as to observe the maximum possible torque generated by these airfoils at Reynolds number varying from 15,000–120,000. Due to change in the value of CL observed at Low Reynolds Number using commercial CFD softwares, multiple objective functions are utilized to observe the behavior over a range of Reynolds number. An experimental co-relation between the cut-in velocity and the lift-coefficient of the airfoils is developed in order to predict the cut-in velocity of the interpolated airfoils. The airfoils used for this paper are NACA 0012, NACA 0018, FX 66 S196, Clark Y (smooth), PT 40, SD 7032, A 18, SD 7080, SG 6043 and SG 6040.


2019 ◽  
Vol 9 (18) ◽  
pp. 3909 ◽  
Author(s):  
Tongqing Guo ◽  
Junjun Jin ◽  
Zhiliang Lu ◽  
Di Zhou ◽  
Tongguang Wang

In this paper, the Navier-Stokes equations coupled with a Lagrangian discrete phase model are described to simulate the air-particle flows over the S809 airfoil of the Phase VI blade, the NH6MW25 airfoil of a 6 MW wind turbine blade and the NACA0012 airfoil. The simulation results demonstrate that, in an attached flow, the slight performance degradation is caused by the boundary layer momentum loss. After flow separation, the performance degradation becomes significant and is dominated by a more extensive separation due to particles, since the aerodynamic coefficient increments and the moving distance of separation point present similar variation trends with increasing angle of attack. Unlike the NACA0012 airfoil, a most particle-sensitive angle of attack is found in the light stall region for a wind turbine airfoil, at which the lift decrement and the drag increment reach their peak values. For the S809 airfoil, the most sensitive angle of attack is about 3° higher than that for the maximum lift-to-drag ratio. Hence, the aerodynamic performance of a wind turbine is very susceptible to particles. Based on the most sensitive angles of attack, the more sensitive scope of angles of attack of a blade airfoil and the more sensitive range of rotor tip speed ratios are predicted sequentially. The present study clarifies the principles for the performance degradation of a wind turbine airfoil due to particles and the conclusions are useful for the wind turbine design reducing the particle influences.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Weijun Tian ◽  
Zhen Yang ◽  
Qi Zhang ◽  
Jiyue Wang ◽  
Ming Li ◽  
...  

The main purpose of this paper is to demonstrate a bionic design for the airfoil of wind turbines inspired by the morphology of Long-eared Owl’s wings. Glauert Model was adopted to design the standard blade and the bionic blade, respectively. Numerical analysis method was utilized to study the aerodynamic characteristics of the airfoils as well as the blades. Results show that the bionic airfoil inspired by the airfoil at the 50% aspect ratio of the Long-eared Owl’s wing gives rise to a superior lift coefficient and stalling performance and thus can be beneficial to improving the performance of the wind turbine blade. Also, the efficiency of the bionic blade in wind turbine blades tests increases by 12% or above (up to 44%) compared to that of the standard blade. The reason lies in the bigger pressure difference between the upper and lower surface which can provide stronger lift.


Sign in / Sign up

Export Citation Format

Share Document