Study of the Uncut Chip in 5 Axes Ball Nose End Milling for the Fourth Quadrant of the Tool Inclination

2015 ◽  
Vol 809-810 ◽  
pp. 99-104 ◽  
Author(s):  
Marius Cosma

The ball nose end milling process, which use a ball nose cutter, is very complex and, generates a pronounced area variation of the cross section in the uncut chip. In this sense, the current paper looks into and assesses some aspects regarding the geometric simulation of the chip generating mechanism in 5 axes ball nose end milling. The influence of tool inclination, however, was not considered in the machining strategy, starting with the tool path program in CAM software, which allows the management of various ways of tool path generation, but cannot decide which one is the best. The present study advances, with minimal approximation, a geometrical method to establish the volume of the uncut chip and area variation of the cross section, obtained in 3D-CAD by four surfaces intersection [1]. Both rotations in 5 axes are considered for the tool and degree range is 0 to 30 for rotary axis A and 0 to-30 for rotary axis B (A+B-in fourth geometrical quadrant).

2013 ◽  
Vol 371 ◽  
pp. 37-41 ◽  
Author(s):  
Marius Cosma

The cross section variation of the uncut chip produced by a ball nose cutter is very complicated. In this sense, the current paper looks into and assesses some aspects regarding the geometric simulation of the chip generating mechanism in 5 axes ball nose end milling. The influence of tool inclination, however, was not considered in the machining strategy, starting with the tool path program in CAM software which allows the management of various ways of tool path generation, but cannot decide which one is the best. The present study advances, with minimal approximation, a geometrical method to establish the volume of the uncut chip and area variation of the cross section, obtained in 3D-CAD by four surfaces intersection. Both rotations in 5 axes are considered for the tool, in negative sense (A- & B-) for 0 to 30 degree range (third geometrical quadrant).


2015 ◽  
Vol 1115 ◽  
pp. 70-73
Author(s):  
Mohammad Yuhan Suprianto ◽  
Erry Yulian T. Adesta ◽  
Muhammad Riza

The aim of the present study is to investigate the influence of cutter engagement on cutting forces in end milling process of AISI H13 (48 HRc). The experiments were carried out on CNC vertical machining center. The machining conditions are as follows: Vc= 150, 200 and 250 m/min, fz= 0.05, 0.1 and 0.15 mm/tooth; a = 0.1, 0.15 and 0.2 mm for every cutting process. Central Composite Design with 20 runs was employed. Data analysis showed that cutter engagement influence the cutting force for the end milling process of hard material H13 in the same pattern to the similar experiment of different material. The present study of cutter engagement will be useful in tool path creation which is important for mold and die machining. The cutter engagement study related to cutting force in high speed end milling of AISI H13 has not yet been established. This study will help the NC programmers in choosing the suitable tool path that will give stable, productive, and more efficient milling process


2020 ◽  
Author(s):  
A. Singh ◽  
I. Shivakoti ◽  
Z. Mustafa ◽  
R. Phipon ◽  
A. Sharma

Author(s):  
Muhammed Shihan ◽  
J. Chandradass ◽  
T.T.M. Kannan ◽  
S.M. Sivagami

2016 ◽  
Vol 693 ◽  
pp. 788-794
Author(s):  
Xiao Xiao Chen ◽  
Jun Zhao

The tool-workpiece contact zone is an important issue in the ball end milling process. This paper investigated the effects of tool inclination angles on the tool-workpiece contact zone, and variations of the cutting section area and perimeter with the increasing tilt and lead angles were also analyzed by geometrical modeling and measurement method for ball end milling process. The appropriate tool inclination angles, which could avoid the extrusion and friction between tool tip and the uncut materials, shorten the loading time on the cutting flute, and decrease the maximum cutting forces, could be preferentially selected according to the distribution characteristics of the tool-workpiece contact zone and the variations of the cutting section area and perimeter corresponding to various tool postures.


Sign in / Sign up

Export Citation Format

Share Document