Evaluation of Permeability Changes in a Carbonate Rock under Carbonate Water Flow

2016 ◽  
Vol 830 ◽  
pp. 65-70
Author(s):  
Eric Yuji Yasuda ◽  
Erika Tomie Koroishi ◽  
Osvair Vidal Trevisan ◽  
Euclides José Bonet

Carbon dioxide (CO2) injection in reservoirs promotes reactions which depend on rock nature, brine composition, partial pressure of CO2, reservoir temperature and pressure among other conditions. The reactions may cause changes in the petrophysics properties, including porosity and permeability, that are important parameters to the fluid flow. The present study focus on the effects of carbonated brine injection in carbonate rocks similar to pre salt reservoirs. The effects are evaluated through the changes of the rock absolute permeability provoked by the acidic action of the injected fluid. Experiments were designed to detail permeability changes along the length of a long carbonate core using using a coreholder equipped with multiple pressure taps. The experiments were conducted in dynamic regime, at the temperature of 22°C and at the mean pressure of 2,000 psi, at flow rates of 0.5; 1 and 2 cc/min. The results show significant permeability alterations at the different segments of the sample, which are also highly dependent on the injection rate.

2014 ◽  
Vol 41 (2) ◽  
pp. 399-406 ◽  
Author(s):  
Benoit Lamy-Chappuis ◽  
Doug Angus ◽  
Quentin Fisher ◽  
Carlos Grattoni ◽  
Bruce W. D. Yardley

1985 ◽  
Vol 25 (06) ◽  
pp. 909-916 ◽  
Author(s):  
A.T. Watson ◽  
P.D. Kerig ◽  
R.W. Otter

Abstract Homogeneous core samples are needed for EOR experiments. We have devised a simple test for detecting the presence of nonuniformities in cores. The test consists of presence of nonuniformities in cores. The test consists of measuring the pressure drop across the core during a two-phase immiscible displacement experiment. We show that for a constant injection rate, the pressure drop will be linear with time provided that the core is homogeneous. In situations for which the initial section of the core is homogeneous, but the properties are not uniform in a latter section of the core, the location of the position where the rock properties fast change may be approximately determined. The effect of heterogeneities on the pressure-drop profile is demonstrated with analytical solutions and profile is demonstrated with analytical solutions and laboratory experiments. Introduction Core samples are used routinely for EOR or relative permeability experiments. For such experiments, selection permeability experiments. For such experiments, selection of a homogeneous core sample is necessary. Visual inspection of the core is not sufficient to ensure homogeneity. Often, vugs or shale barriers may be present, which may invalidate experimental results. In this paper, a simple test to detect the presence of core heterogeneities is devised. The scale of heterogeneities considered corresponds to the usual macroscopic description of porous medium properties. The properties of a porous medium (e.g., the properties. The properties of a porous medium (e.g., the porosity and permeability) at any particular location refer porosity and permeability) at any particular location refer to average quantities for some appropriate (small) representative volume element. In this way, each (locally averaged) property is defined at every point within the medium, the collection of which defines the representation of each property as a function of position. If each macroscopic property has the same value at all positions, the medium is said to be homogeneous. Otherwise, the medium is heterogeneous. A more complete discussion of macroscopic properties and heterogeneities can be found in Refs. 1 through 3. The macroscopic scale is a natural one to use for core selection because attempts to model coreflood experiments or to estimate properties of the porous medium on the basis of measured flow data generally will use mathematical models that use macroscopic properties. A homogeneous core sample is necessary for the experimental determination of relative permeabilities from displacement experiments. Explicit methods for estimating relative permeabilities from displacement data are based on the permeabilities from displacement data are based on the Buckley-Leverett model, in which the core is assumed to be homogeneous. The absolute permeability generally is determined from a single-phase flow experiment and thus represents an average value for the entire core. If the core is not homogeneous, so that the absolute permeability takes on different values in different locations permeability takes on different values in different locations in the core, errors will appear in the relative permeability estimates. Although the magnitude of the errors will depend on many factors, a macroscopically homogeneous sample is always preferred. Note that heterogeneities may also be defined on a microscopic scale. A porous medium that is macroscopically homogeneous may be microscopically heterogeneous. In fact, this typically would be the case because few real porous media structures are microscopically homogeneous. In this paper, we develop a test for detecting the presence of macroscopic heterogeneities in core samples. presence of macroscopic heterogeneities in core samples. The test is conducted by displacing the fluid that initially saturates the porous medium with a second fluid that is immiscible with the displaced fluid. The pressure drop across the core is recorded up to the time of breakthrough of the displacing fluid. The test is based on the observation that, with a constant injection rate and incompressible fluids, the pressure drop will be linear with time provided that the core is homogeneous. It is also shown provided that the core is homogeneous. It is also shown that, if the porosity and permeability for a heterogeneous core may be approximated as functions of the longitudinal spatial dimension, the pressure drop will be linear with time provided that the region in which both fluid phases are flowing simultaneously has uniform properties. The detection of heterogeneities by this method is discussed and illustrated with analytical solutions for the displacement process and with laboratory experimental data. Theory We consider here a displacement experiment with two incompressible fluids. Initially, the core is saturated with one fluid and the other fluid is injected at one end. For example, if the core initially contains only oil or air, water might be injected at one end. The core could contain the irreducible saturation of the displacing fluid initially, although this is not experimentally convenient and is not necessary for conducting the test. The pressure drop across the core is recorded through the time of breakthrough of the displacing fluid at the core outlet. SPEJ P. 909


2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
K Piayda ◽  
A Wimmer ◽  
H Sievert ◽  
K Hellhammer ◽  
S Afzal ◽  
...  

Abstract Background In the era of transcatheter aortic valve replacement (TAVR), there is renewed interest in percutaneous balloon aortic valvuloplasty (BAV), which may qualify as the primary treatment option of choice in special clinical situations. Success of BAV is commonly defined as a significant mean pressure gradient reduction after the procedure. Purpose To evaluate the correlation of the mean pressure gradient reduction and increase in the aortic valve area (AVA) in different flow and gradient patterns of severe aortic stenosis (AS). Methods Consecutive patients from 01/2010 to 03/2018 undergoing BAV were divided into normal-flow high-gradient (NFHG), low-flow low-gradient (LFLG) and paradoxical low-flow low-gradient (pLFLG) AS. Baseline characteristics, hemodynamic and clinical information were collected and compared. Additionally, the clinical pathway of patients (BAV as a stand-alone procedure or BAV as a bridge to aortic valve replacement) was followed-up. Results One-hundred-fifty-six patients were grouped into NFHG (n=68, 43.5%), LFLG (n=68, 43.5%) and pLFLG (n=20, 12.8%) AS. Underlying reasons for BAV and not TAVR/SAVR as the primary treatment option are displayed in Figure 1. Spearman correlation revealed that the mean pressure gradient reduction had a moderate correlation with the increase in the AVA in patients with NFHG AS (r: 0.529, p<0.001) but showed no association in patients with LFLG (r: 0.145, p=0.239) and pLFLG (r: 0.030, p=0.889) AS. Underlying reasons for patients to undergo BAV and not TAVR/SAVR varied between groups, however cardiogenic shock or refractory heart failure (overall 46.8%) were the most common ones. After the procedure, independent of the hemodynamic AS entity, patients showed a functional improvement, represented by substantially lower NYHA class levels (p<0.001), lower NT-pro BNP levels (p=0.003) and a numerical but non-significant improvement in other echocardiographic parameters like the left ventricular ejection fraction (p=0.163) and tricuspid annular plane systolic excursion (TAPSE, p=0.066). An unplanned cardiac re-admission due to heart failure was necessary in 23.7% patients. Less than half of the patients (44.2%) received BAV as a bridge to TAVR/SAVR (median time to bridge 64 days). Survival was significantly increased in patients having BAV as a staged procedure (log-rank p<0.001). Conclusion In daily clinical practice, the mean pressure gradient reduction might be an adequate surrogate of BAV success in patients with NFHG AS but is not suitable for patients with other hemodynamic entities of AS. In those patients, TTE should be directly performed in the catheter laboratory to correctly assess the increase of the AVA. BAV as a staged procedure in selected clinical scenarios increases survival and is a considerable option in all flow states of severe AS. (NCT04053192) Figure 1 Funding Acknowledgement Type of funding source: None


Author(s):  
W-T. Lyn ◽  
E. Valdmanis

The effects of physical factors on ignition delay have been studied on a motored research engine using a single injection technique. The fuels used included a high cetane number reference fuel, gas oil and M.T. 80 petrol. The primary factors investigated are those pertaining to the fuel spray, such as injection timing, quantity, and pressure (affecting drop size, velocity and injection rate); hole diameter (affecting drop size and injection rate) and spray form (nozzle type); and those pertaining to the engine, such as temperature, pressure and air velocity. Engine operating variables such as speed and load affect the ignition delay because they change the primary factors such as injection pressure, compression temperature, pressure and air velocity. It has been found that under normal running conditions, compression temperature and pressure are the major factors. All other factors have only secondary effects. Under starting conditions, when ignition is marginal, mixture formation becomes as important as compression temperature and pressure. Such factors as air velocity and spray form which affect the mixing pattern can have a very pronounced effect on ignition delay. Published data on ignition delay are compared with those obtained in the present investigation and a generalization of the data is recommended for engine design and computational work.


2002 ◽  
Vol 103 (2) ◽  
pp. 213-216 ◽  
Author(s):  
Roland MATERNE ◽  
Laurence ANNET ◽  
Stéphane DECHAMBRE ◽  
Christine SEMPOUX ◽  
Anne M. SMITH ◽  
...  

Interstitial collagen formation and transformation of the fenestrated hepatic sinusoids into continuous capillaries are major ultrastructural changes that occur in liver cirrhosis and fibrosis. These modifications lead to progressive restriction of blood–liver exchanges. The purpose of our study was to evaluate the permeability changes in a model of hepatic fibrosis by using dynamic computed tomography (CT) enhanced with contrast agents of different molecular masses. Dynamic single-section CT of the liver was performed after intravenous bolus administration of a low-molecular-mass contrast agent (iobitridol) and an experimental high-molecular-mass agent (P840) in normal control rabbits and in rabbits with hepatic fibrosis. Hepatic, aortic and portal venous time–density curves were fitted with a dual-input one-compartmental model to calculate the hepatic mean transit time and distribution volume of the contrast agents. In the rabbits with liver fibrosis, the mean transit time of the high-molecular-mass agent was shorter than that of the low-molecular-mass agent (10.0±1.8s and 12.0±1.2s respectively; P<0.05). The distribution volume accessible to the high-molecular-mass agent was also smaller (22.2±4.8% compared with 32.0±6.7%; P<0.01). In the normal rabbits, the mean transit times of the high- and low-molecular-mass agents did not differ significantly, and nor did their distribution volumes. Our results demonstrate decreased sinusoidal permeability for the high-molecular-mass agent P840 in a model of hepatic fibrosis. Non-invasive assessment of permeability changes in liver fibrosis can be performed with dynamic CT and contrast agents of different molecular masses.


1993 ◽  
Vol 75 (1) ◽  
pp. 148-154 ◽  
Author(s):  
S. Isono ◽  
D. L. Morrison ◽  
S. H. Launois ◽  
T. R. Feroah ◽  
W. A. Whitelaw ◽  
...  

The static mechanics of the hypotonic pharynx were endoscopically evaluated in nine sleeping patients with obstructive sleep apnea, having a primary narrowing only at the velopharynx. The velopharynx closed completely at a mean pressure of 0.18 +/- 1.21 cmH2O, and the mean half-dilation pressure was 1.93 cmH2O above closing pressure. The dependence of area on pressure was distinctly curvilinear, being steep near closing pressure and asymptotically approaching maximum area (mean = 1.32 cm2). The data for each patient were satisfactorily fitted by an exponential function (mean R2 = 0.98), and a single exponential relationship usefully represented the dependence of relative area on pressure above closing pressure for the population (R2 = 0.85). During the test inspiration, flow limitation was consistently observed when mask pressure exceeded closing pressure by 0.5–3.0 cmH2O. In summary, the static mechanics of the hypotonic velopharynx of patients with obstructive sleep apnea can be described by an exponential pressure-area relationship, with a closing pressure near atmospheric pressure and a high compliance in the range of airway pressure 0–3 cmH2O above closing pressure.


2011 ◽  
Vol 25 (12n13) ◽  
pp. 1041-1051 ◽  
Author(s):  
HO KHAC HIEU ◽  
VU VAN HUNG

Using the statistical moment method (SMM), the temperature and pressure dependences of thermodynamic quantities of zinc-blende-type semiconductors have been investigated. The analytical expressions of the nearest-neighbor distances, the change of volumes and the mean-square atomic displacements (MSDs) have been derived. Numerical calculations have been performed for a series of zinc-blende-type semiconductors: GaAs , GaP , GaSb , InAs , InP and InSb . The agreement between our calculations and both earlier other theoretical results and experimental data is a support for our new theory in investigating the temperature and pressure dependences of thermodynamic quantities of semiconductors.


1977 ◽  
Vol 99 (3) ◽  
pp. 503-509 ◽  
Author(s):  
B. E. Lee ◽  
B. F. Soliman

A study has been made of the influence of grouping parameters on the mean pressure distributions experienced by three dimensional bluff bodies immersed in a turbulent boundary layer. The range of variable parameters has included group density, group pattern and incident flow type and direction for a simple cuboid element form. The three flow regimes associated with increasing group density are reflected in both the mean drag forces acting on the body and their associated pressure distributions. A comparison of both pressure distributions and velocity profile parameters with established work on two dimensional bodies shows close agreement in identifying these flow regime changes. It is considered that the application of these results may enhance our understanding of some common flow phenomena, including turbulent flow over rough surfaces, building ventilation studies and environmental wind around buildings.


2005 ◽  
Vol 26 (6) ◽  
pp. 442-448 ◽  
Author(s):  
Craig I. Title ◽  
Hung-Geun Jung ◽  
Brent G. Parks ◽  
Lew C. Schon

Background: The goal of this study was to identify pressure changes throughout the peroneal groove after a groove deepening procedure. We hypothesized that pressures would decrease. Methods: Twelve fresh-frozen foot and ankle specimens were used. A thin pressure strip containing four sensor pads was secured within the peroneal groove with pads 1 through 4 positioned at the calcaneofibular ligament (CFL) and at the distal, middle, and proximal groove, respectively. The midstance phase of gait was simulated with loads applied to the plantar foot and posterior tibial tendon and to the peroneus longus and brevis tendons. Pressures were recorded with the ankle in neutral, plantarflexion, dorsiflexion, inversion, and eversion. Groove deepening was done by osteotomizing the posterior fibular wall. Pressure readings were then recorded. Average pressures for each of the four sensor pads after the procedure were compared to those obtained before the procedure. Results: The mean pressure overlying the CFL increased at all five ankle positions; however, these changes were not significant. Significant decreases in pressure were noted within the distal and middle groove at all ankle positions after the peroneal groove deepening procedure. Pressure within the proximal groove increased at all but one position, with a significant difference noted in neutral and plantarflexion. Conclusion: Pressures within the middle and distal peroneal groove significantly decreased after a groove deepening procedure. Combining this technique with peroneal tendon debridement may be advantageous for treatment of partial peroneal tendon tears or recalcitrant peroneal tendinitis.


Sign in / Sign up

Export Citation Format

Share Document