Verification CAE System for Plastic Injection

2016 ◽  
Vol 834 ◽  
pp. 79-83 ◽  
Author(s):  
Lukáš Satin ◽  
Jozef Bílik

This article is focused on the field of computer simulation and it is subsequent verification in practice. The work highlights the injection process, the simulation software that is specialized in injection molding and the technology process of injection itself. The major subject of the thesis is the use of the computer aided injection molding technology by using the CAE systems. The experimental part of the thesis deals with the production of the 3D model specific plastic parts in two modifications, injection molding simulation in the system Moldex3D and digitization of moldings on the optical 3D scanner. In the thesis we also provide measuring realization on digitized models and comparison of the parts size with the computer model. In conclusion we summarize the results achieved from the comparison. The thesis is carried out in cooperation with the Simulpast s.r.o.

2000 ◽  
Author(s):  
Jim Nerone ◽  
Karthik Ramani

Abstract New aluminum alloys, QC-7® and QE-7®, have thermal conductivities four times greater than traditional tool steels, and have significantly increased strength and hardness compared to traditional aluminum materials. Molds were constructed of P-20 tool steel and QE-7® aluminum and were used to provide experimental data regarding thermal mold characteristic and confirm injection molding simulation predictions using C-Mold®. The relationships between cooling time reduction (using aluminum alloys) and polymer type, cooling channel depth, part wall thickness, and coolant temperature were explored both experimentally and using simulation software. It was shown that the potential reduction in cooling time varied from 5% to 25%. The most significant percentage improvements were observed in parts with part wall thickness of 0.05″ to 0.10″ and in molds with cooling channels at a depth ratio (D/d) of 2.0. The thermal pulses in the steel mold 0.10″ from the surface were approximately 63% larger than in aluminum mold.


Author(s):  
Javier Ávila ◽  
Vicente Borja ◽  
Marcelo López-Parra ◽  
Alejandro C. Ramírez-Reivich

In this article a GHG and energy analysis for the plastic injection process of an ABS medium sized injected part carried out in a hybrid injection molding machine is reported. A power consumption process pattern for an ABS medium-size part is defined as well as the energy usage of components, the energy used for the injection process is calculated for the injection cycle and for the process setup. The reported study includes a hybrid machine analysis working under an electric network that relies mainly on thermoelectric energy generation. The GHG emissions assessment was estimated using the 2015 emission factor applied for Mexico. The results provide new experimental data for ABS plastic injected parts in hybrid injection machines. This paper describes the outcomes of a GHG emissions and energy assessment for an ABS medium-sized injected part carried out in a HIMM at UNAM. The approach followed by the authors in this assessment was aimed at providing information about the energy usage and GHG emissions for the process and the part. The main contribution of this paper is the insight related to energy usage indicators in the process, the energy usage and the GHG emissions within components. The product used as a case study and the results of its GHG emissions and energy assessment are presented.


2000 ◽  
Author(s):  
Baojiu Lin ◽  
Won Gil Ryim

Abstract Improvements in part quality and cost reduction are the primary objectives of CAE use in the injection molding industry. Engineers use advanced injection molding simulation software to analyze and verify their part designs. Traditionally, engineers have had to rerun simulations to verify the effects of changes in gate locations. For complex models, simulations are very time consuming. To reduce the design cycle time, a Design Optimization Module is developed by C-MOLD. One of the functions of this new software module is to automatically select optimal gate locations. This innovative technology is the result of close R&D collaboration between C-MOLD and LG-PRC in Korea. An overview of gate location optimization technology is presented in this paper, and several examples are also presented as illustration.


2011 ◽  
Vol 88-89 ◽  
pp. 279-284
Author(s):  
Feng Li Huang ◽  
Mei Peng Zhong ◽  
Jin Mei Gu ◽  
G.W. Liu

Based on single objective robust design of injection molding process, a bi-objective robust design model based on mean and standard deviation of molding quality and a multi-objective ant colonies algorithm with crossover and mutation based on Pareto optimization are proposed. Aimed at the craft parameters of plastic injection for the top and down shell of remote controller, a model of bi-objective robust design based on mean and standard deviation of warpage quantity is established with an example. And the model is solved by multi-objective ant colonies algorithm of crossover and mutation. The result shows that partial performances of algorithm are superior to that of NSGAII. The actual plastic injection was done by means of the parameters which were gotten by multi-objective robust optimization. The quality of plastic parts was high, and the fluctuation was small.


Author(s):  
María B. Becerra ◽  
Arturo Hernández ◽  
Ángel A. Franco ◽  
José M. Zea ◽  
Roberto Zitzumbo

This research aims to find the causes of weight variation of plastic products that cause a high cost and rework. The importance of using statistical control on the weight of plastic parts is presented; describing the type of machinery used to manufacture, considering the properties and applications of material as Acetal and conditions for injection molding operation, where a 24 factorial experimental design was used to find the variables which influence the weight of the product to maintain a stable process. An efficient solution was developed considering the variables of pressure and injection time to be highly significant in the weight of the plastic parts. Finally an optimal arrangement is generated for the plastic injection process which ensures a stable production process and ensures the quality of the product, which implies a reduction of costs and compliance with design specifications.


2014 ◽  
Vol 621 ◽  
pp. 88-93
Author(s):  
Yi Ning Song ◽  
Xi Ping Li ◽  
Ning Ning Gong

High-gloss injection molding technology is also called rapid cool and heat injection technology which can be used to eliminate weldmark on the surface of plastic parts, and improve the surface glossiness. However, the warpage, sink index and volume shrinkage of the parts are considered difficult to solve by using this technology. Reasons that cause the warpage and sink index of the parts were discussed in this paper firstly. Then, by using a LCD panel produced in practical injection process as an example, through orthogonal experimental design and finite element simulation, this paper discusses the effects of the injection molding parameters such as mold temperature, melt temperature etc. on warpage and sink index of the parts. The results are of great significance to help to set practical process parameters and assure the part quality in injection process.


2012 ◽  
Vol 201-202 ◽  
pp. 1170-1173
Author(s):  
Hong Lin Li ◽  
Zhi Xin Jia

High-speed injection molding technology refers to the injection speed of rotating screw is about 500mm ~1000mm/s during the injection process. It is extensively used in the fabrication of thin and accurate products, for example, packing containers, CD or DVD disc-based panels, smart cards, optic fiber connecters, etc. In this paper, the advantages of high-speed injection molding technology on cost savings, product quality and productivity are presented firstly. Then the mold characteristics on strength, stiffness, precision, used material, heat treatment, the runner system, the venting system and the ejection system are illustrated. A plastic flowerpot by high-speed injection molding is selected as an example to show the high production efficiency.


2015 ◽  
Vol 786 ◽  
pp. 210-214
Author(s):  
M.S. Rusdi ◽  
Mohd Zulkifly Abdullah ◽  
A.S. Mahmud ◽  
C.Y. Khor ◽  
M.S. Abdul Aziz ◽  
...  

Computational Fluid Dynamic (CFD) was used to simulate the injection molding process of a tray. The study focuses on pressure distribution and velocity drop during the injection process. CFD simulation software ANSYS FLUENT 14 was utilized in this study. The melt front pressure in the mold cavity shows that it was affected by the shape of mold cavity and filling stage. The melt front pressure will decrease as the flow move further than the sprue but it will increase rapidly when the mold was about to be fully filled. The slight pressure drop was detected when the molten flow meets the rib of the tray. The velocity of higher injection pressure was greater than the lower injection pressure but the velocity rapidly dropped when the melt front fully filled the cavity. The current predicted flow profile was validated by the experimental results, which demonstrates the excellent capability of the simulation tool in solving injection-molding problems.


Author(s):  
Peng Zhao ◽  
Weimin Yang ◽  
Xiaoman Wang ◽  
Jiangang Li ◽  
Bo Yan ◽  
...  

Being able to predict products’ degrees of crystallinity and thereby optimize their crystallization processes is of great significance for producing high-quality polymeric products in injection molding. However, it is rather difficult to theoretically establish the relationship between the crystallization results and processing conditions (high cooling rates and pressures, strong and complex flow fields). Injection molding simulation software can simulate polymers’ density results during packing stage, and these predicted density results can be used to calculate polymers’ crystallinity results. Based on this idea, a novel method was proposed to predict the degrees of crystallinity for polymers during packing stage. In this method, pressure and temperature results are first simulated by an injection molding simulation software, and then the density results are calculated based on a pressure–volume–temperature model. Next, the crystallinity results are solved according to the densities of the fully crystalline part and the purely amorphous part. Finally, two case studies are conducted to verify the proposed crystallinity prediction method. Moreover, the effects of packing parameters (mold temperature, packing pressure, and packing time) on polymers’ crystallization behaviors are investigated. The experimental results show that the proposed method is correct and effective.


Sign in / Sign up

Export Citation Format

Share Document