Numerical Investigation on the Effect of Injection Pressure on Melt Front Pressure and Velocity Drop

2015 ◽  
Vol 786 ◽  
pp. 210-214
Author(s):  
M.S. Rusdi ◽  
Mohd Zulkifly Abdullah ◽  
A.S. Mahmud ◽  
C.Y. Khor ◽  
M.S. Abdul Aziz ◽  
...  

Computational Fluid Dynamic (CFD) was used to simulate the injection molding process of a tray. The study focuses on pressure distribution and velocity drop during the injection process. CFD simulation software ANSYS FLUENT 14 was utilized in this study. The melt front pressure in the mold cavity shows that it was affected by the shape of mold cavity and filling stage. The melt front pressure will decrease as the flow move further than the sprue but it will increase rapidly when the mold was about to be fully filled. The slight pressure drop was detected when the molten flow meets the rib of the tray. The velocity of higher injection pressure was greater than the lower injection pressure but the velocity rapidly dropped when the melt front fully filled the cavity. The current predicted flow profile was validated by the experimental results, which demonstrates the excellent capability of the simulation tool in solving injection-molding problems.

2007 ◽  
Vol 4 (2) ◽  
pp. 1
Author(s):  
Muhammad Hussain Ismail ◽  
Norhamidi Muhamad ◽  
Aidah Jumahat ◽  
Istikamah Subuki ◽  
Mohd Afian Omar

Metal Injection Molding (MIM) is a wellestablished technology for manufacturing a variety of complex and small precision parts. In this paper, fundamental rheological characteristics of MIM feedstock using palm stearin are theoretically analyzed and presented. The feedstock consisted of gas atomized 316L stainless steel powder at three different particle size distributions and the binder system of palm stearin (PS) and polyethylene (PE). The powder loading used was 60vol % for all samples (monosize 16 µm, monosize 45 µm, and bimodal 16 µm + 45 µm) and the binder system of 40vol %(PS/PE = 40/60). The viscosity of MIM feedstock at different temperatures and shear rates was measured and evaluated. Results showed that, the feedstock containing palm stearin exhibited suitable rheological properties by increasing the fluidity of feedstock in MIM process. The rheological results also showed a pseudoplastic flow characteristics, which poses higher value of shear sensitivity (n) and lower value of flow activation energy (E), that are both favourable for injection molding process. The green parts were successfully injected and exhibited adequate strength for handling by optimizing the injection pressure and temperature.


Author(s):  
Jaho Seo ◽  
Amir Khajepour ◽  
Jan P. Huissoon

This study proposes an effective thermal control for plastic injection molding (polymer: Santoprene 8211-45 with density of 790 kg/m3, injection pressure: 1400 psi (9,652,660 Pa)) in a laminated die. For this purpose, a comprehensive control strategy is provided to cover various themes. First, a new method for determining the optimal sensor locations as a prerequisite step for modeling and controller design is introduced. Second, system identification through offline and online training with finite element analysis and neural network techniques are used to develop an accurate model by incorporating uncertain dynamics of the laminated die. Third, an additive feedforward control by adding direct adaptive inverse control to self-adaptive PID is developed for temperature control of cavity wall (cavity size: 52.9 × 32.07 × 16.03 mm). A verification of designed controller's performance demonstrates that the proposed strategy provides accurate online temperature tracking and faster response under thermal dynamics with various cycle-times in the injection mold process.


2017 ◽  
Vol 894 ◽  
pp. 81-84 ◽  
Author(s):  
Mohd Khairul Fadzly Md Radzi ◽  
Norhamidi Muhamad ◽  
Abu Bakar Sulong ◽  
Zakaria Razak

Optimization of injection molding parameters provided a solution to achieve strength improvement of kenaf filler polypropylene composites. Since, molded polymers composites possibility being effected by machine parameters and other process condition that may cause poor quality of composites product. Thus in this study, composite of kenal filler reinforced with thermoplastic polypropylene (PP) were prepared using a sigma blade mixer, followed by an injection molding process. To determine the optimal processing of injection parameters, Taguchi method with L27 orthogonal array was used on statistical analysis of tensile properties of kenaf/PP composites. The results obtained the optimum parameters which were injection temperature 190°C, injection pressure 1300 bar, holding pressure 1900 bar and injection rate 20cm3/s. From the analysis of variance (ANOVA), both flow rate and injection temperature give highest contribution factor to the mechanical properties of the kenaf/PP composites.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1194-1197 ◽  
Author(s):  
Michal Stanek ◽  
David Manas ◽  
Miroslav Manas ◽  
Vojtech Senkerik ◽  
Adam Skrobak ◽  
...  

Injection molding is one of the most extended polymer processing technologies. It enables the manufacture of final products, which do not require any further operations. The tools used for their production – the injection molds – are very complicated assemblies that are made using several technologies and materials. Delivery of polymer melts into the mold cavity is the most important stage of the injection molding process. The fluidity of polymers is affected by many parameters Inc. mold design. Evaluation of set of data obtained by experiments in which the testing conditions were widely changed shows that the quality of cavity surface and technological parameters (injection rate, injection pressure and gate size) has substantial influence on the length of flow.


Author(s):  
Catalin Fetecau ◽  
Ion Postolache ◽  
Felicia Stan

The research presented in this paper involves numerical and experimental efforts to investigate the relative thin-wall injection molding process in order to obtain high dimensional quality complex parts. To better understand the effects of various processing parameters (the filling time, injection pressure, the melting temperature, the mold temperature) on the injection molding of a thin-wall complex part, the molding experiments are regenerated into the computer model using the Moldflow Plastics Insight (MPI) 6.1 software. The computer visualization of the filling phase allows accurate prediction of the location of the flow front, welding lines and air traps. Furthermore, in order to optimize the injection molding process, the effects of the geometry of the runner system on the filling and packing phases are also investigated. It is shown that computational modeling could be used to help the process and mold designer to produce accurate parts.


2017 ◽  
Vol 9 (1) ◽  
pp. 79-88
Author(s):  
Piotr Tutak

Abstract This article presents an application of moldflow simulation to optimize the injection molding process of charge air cooler plastic tank. The work shows the advantages of this kind of simulation software and information that it can provide. It also explains how big role today play simulation softwares and how they can improve product and reduce development cost.


2011 ◽  
Vol 189-193 ◽  
pp. 537-540
Author(s):  
Jia Min Zhang ◽  
Ming Yi Zhu ◽  
Zhao Xun Lian ◽  
Rong Zhu

The use of L27 (35) orthogonal to the battery shell injection molding process is optimized. The main factors of technical parameters were determined mould temperature, melt temperature, the speed of injection, injection pressure, cooling time.On the basis of actual production, to determine the factors values of different process parameters.Combination of scrapped products in key (reduction and a high degree of tolerance deflated) tests were selected in the process parameters within the scope of the assessment. Various factors impact on the product of the total height followed by cooling time, mold temperature, melt temperature, injection pressure, injection speed from strong to weak .The best products technological parameters were determined.Good results were obtained for production.


2018 ◽  
Vol 928 ◽  
pp. 133-138
Author(s):  
Karel Ráž ◽  
Martin Zahalka

The main aim of this paper was to describe the viscosity and injection mold filling behavior of PA6 with 15% of glass fibers. Injection molding is one of the most widely used processes for polymer products. The quality of these products is directly linked to correct choice of process parameters. It is necessary to understand the filling behavior of the polymer material during the injection molding process. The spiral flow test was carried out in this study to explore the effects of several injection process parameters. The resulting lengths of spiral flow were compared. The polymer material under test was Polyamide 6 with 15% of short glass fibers (trade name: Durethan BKV 15). Virtual testing as well as real testing was performed. A predominantly linear relationship between the flow length and the mold temperature, melt temperature and injection pressure is described here. A special mold was designed for this test.


2007 ◽  
Vol 336-338 ◽  
pp. 1021-1024 ◽  
Author(s):  
Xiao Jun Liu ◽  
Zhong Zhou Yi ◽  
Kang Ming Huang ◽  
Zhi Peng Xie ◽  
Yong Huang

Two kinds of commercial alumina compacts made by injection molding with different solid loading are studied. Solid loading is the key factor for the injection molding process and the properties of green body and sintered compacts. The results show that higher solid loading leads to better properties of the compacts such as density and fracture strength, however the viscosity of the feedstock would increase. Smaller sized alumina powder leads to a higher critical solid loading value. Macroscopic defects such as voids and cracks could be introduced into the injection molding samples if the molding variables are not optimized. The properties of sample are improved by adjusting the variables such as injection pressure, holding pressure, holding time and barrel temperature.


2014 ◽  
Vol 709 ◽  
pp. 374-379
Author(s):  
Yi Jun Huang

Injection molding is one of several molding technology of microcellular foamed plastics. This paper mainly discusses the injection molding mechanism and applications of microcellular foamed plastics here, and analyzes the influence of microcellular foamed plastics injection molding process parameters, including injection pressure, melt temperature, injection time, etc.; At the same time, this paper makes a more systematic discussions for the injection molding technology of microcellular foamed plastics, and the typical cases of microcellular foamed plastics in engineering application are introduced in detail.


Sign in / Sign up

Export Citation Format

Share Document