Study on the Use of Boundary Characteristic Orthogonal Polynomials in Determining the Fundamental Frequency of Rectangular Plates with Bidirectional Linear Thickness Variation

2016 ◽  
Vol 852 ◽  
pp. 518-524
Author(s):  
Tanmay Gupta ◽  
Bhagat Kewlani ◽  
Kiran D. Mali

Free vibration of rectangular plates with linearly varying thickness is considered. Plates are important structural components used in aircrafts, bridges etc. and hence for their safe design, thorough vibration analysis is important. Many research and practical applications use plates of variable thickness due to economical usage of the material and increased strength. Vibration response of these types of plates is different from plates of uniform thickness, which makes their analysis critical. In this study, Boundary Characteristic Orthogonal Polynomials (BCOPs) in one and two dimensions have been used to obtain deflection shape function. The first member of the series is generated using the boundary conditions, in this case all edges clamped, which satisfies both the geometric boundary conditions and the natural boundary conditions. Gram Schmidt Orthogonalization for polynomials is used to generate the higher members of the shape function which only satisfy the geometric boundary conditions. Thickness variation considered for the plate is linear in both x and y direction. Natural frequencies were obtained by using Rayleigh-Ritz method. Natural frequencies were calculated by varying taper parameters for both directions and compared with those obtained with the case of uniform thickness. Natural frequencies were also found comparable with those obtained from Finite Element Analysis by using ANSYS.

2012 ◽  
Vol 19 (3) ◽  
pp. 349-364 ◽  
Author(s):  
R. Lal ◽  
Yajuvindra Kumar

The free transverse vibrations of thin nonhomogeneous rectangular plates of variable thickness have been studied using boundary characteristic orthogonal polynomials in the Rayleigh-Ritz method. Gram-Schmidt process has been used to generate these orthogonal polynomials in two variables. The thickness variation is bidirectional and is the cartesian product of linear variations along two concurrent edges of the plate. The nonhomogeneity of the plate is assumed to arise due to linear variations in Young's modulus and density of the plate material with the in-plane coordinates. Numerical results have been computed for four different combinations of clamped, simply supported and free edges. Effect of the nonhomogeneity and thickness variation with varying values of aspect ratio on the natural frequencies of vibration is illustrated for the first three modes of vibration. Three dimensional mode shapes for all the four boundary conditions have been presented. A comparison of results with those available in the literature has been made.


Author(s):  
C. Rajalingham ◽  
R. B. Bhat ◽  
G. D. Xistris

Abstract The natural frequencies and natural modes of vibration of uniform elliptic plates with clamped, simply supported and free boundaries are investigated using Rayleigh-Ritz method. A modified polar coordinate system is used to investigate the problem. Energy expressions in Cartesian coordinate system are transformed into the modified polar coordinate system. Boundary characteristic orthogonal polynomials in the radial direction, and trigonometric functions in the angular direction are used to express the deflection of the plate. These deflection shapes are classified into four basic categories, depending on its symmetrical or antisymmetrical property about the major and minor axes of the ellipse. The first six natural modes in each of the above categories are presented in the form of contour plots.


Author(s):  
L. T. Lee ◽  
W. F. Pon

Abstract Natural frequencies of parallelogrammic plates are obtained by employing a set of beam characteristic orthogonal polynomials in the Rayleigh-Ritz method. The orthogonal polynomials are generalted by using a Gram-Schmidt process, after the first member is constructed so as to satisfy all the boundary conditions of the corresponding beam problems accompanying the plate problems. The strain energy functional and kinetic energy functionals are transformed from Cartesian coordinate system to a skew coordinate system. The natural frequencies obtained by using the orthogonal polynomial functions are compared with those obtained by other methods with all four edges clamped boundary conditions and greet agreements are found between them. The natural frequencies for parallelogrammic plates with other boundary conditions, such as four edges simply supported, clamped-free and simply supported-free, are also obtained. This method is considered as a better and accurate comprehensive treatment for this type of problems.


1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.


2011 ◽  
Vol 18 (4) ◽  
pp. 627-640 ◽  
Author(s):  
S. Bashmal ◽  
R. Bhat ◽  
S. Rakheja

In-plane free vibrations of an elastic and isotropic annular disk with elastic constraints at the inner and outer boundaries, which are applied either along the entire periphery of the disk or at a point are investigated. The boundary characteristic orthogonal polynomials are employed in the Rayleigh-Ritz method to obtain the frequency parameters and the associated mode shapes. Boundary characteristic orthogonal polynomials are generated for the free boundary conditions of the disk while artificial springs are used to account for different boundary conditions. The frequency parameters for different boundary conditions of the outer edge are evaluated and compared with those available in the published studies and computed from a finite element model. The computed mode shapes are presented for a disk clamped at the inner edge and point supported at the outer edge to illustrate the free in-plane vibration behavior of the disk. Results show that addition of point clamped support causes some of the higher modes to split into two different frequencies with different mode shapes.


1989 ◽  
Vol 111 (1) ◽  
pp. 101-103 ◽  
Author(s):  
Wei-Cheun Liu ◽  
Stanley S. H. Chen

The problem vibration of rectangular orthotropic plates with variable thickness and mixed boundary conditions are solved by a modified energy method. A general expression is written for the deflection of the plate without aiming at any particular combination of boundary conditions. Boundary conditions are satisfied approximately by adjusting a set of so-called fixity factors. A computer program has been developed to solve for natural frequencies of plates with variable thicknesses and having different orthotropic properties.


2019 ◽  
Vol 2 (1) ◽  
pp. 19-27
Author(s):  
Yoshihiro Narita ◽  
Michio Innami ◽  
Daisuke Narita

This paper deals with effects of using different sets of material constants on the natural frequencies of laminated composite rectangular plates. The plate is symmetrically laminated by thin layers composed of recently developed carbon fiber reinforced plastic (CFRP) materials. Numerical experiments are conducted by using a semi-analytical solution based on the thin plate theory and the lamination theory. The displacements are assumed to accommodate any combination of classical boundary conditions. The material property is expressed by a set of four elastic constants, and some typical sets of values are cited from the recent literature. Furthermore, a new standard set of discretized constants is proposed to uncover the underlying characteristics of the existing constants. The convergence study is carried out first, and the lowest five natural frequencies are calculated for five sets of classical boundary conditions including totally free through totally clamped cases. Next, a new definition of frequency parameters is introduced to promote more physically meaningful comparison among the obtained results, and the effect of using slightly different constants is clarified for unified comparison and insights. It is also discussed to derive approximate frequency formulas by linear regression analysis and to test accuracy of the formulas.


Author(s):  
A Hasani Baferani ◽  
A R Saidi ◽  
E Jomehzadeh

The aim of this article is to find an exact analytical solution for free vibration characteristics of thin functionally graded rectangular plates with different boundary conditions. The governing equations of motion are obtained based on the classical plate theory. Using an analytical method, three partial differential equations of motion are reformulated into two new decoupled equations. Based on the Navier solution, a closed-form solution is presented for natural frequencies of functionally graded simply supported rectangular plates. Then, considering Levy-type solution, natural frequencies of functionally graded plates are presented for various boundary conditions. Three mode shapes of a functionally graded rectangular plate are also presented for different boundary conditions. In addition, the effects of aspect ratio, thickness—length ratio, power law index, and boundary conditions on the vibration characteristics of functionally graded rectangular plates are discussed in details. Finally, it has been shown that the effects of in-plane displacements on natural frequencies of functionally graded plates under different boundary conditions have been studied.


2011 ◽  
Vol 78 (6) ◽  
Author(s):  
Yajuvindra Kumar ◽  
R. Lal

An analysis and numerical results are presented for buckling and transverse vibration of orthotropic nonhomogeneous rectangular plates of variable thickness using two dimensional boundary characteristic orthogonal polynomials in the Rayleigh–Ritz method on the basis of classical plate theory when uniformly distributed in-plane loading is acting at two opposite edges clamped/simply supported. The Gram–Schmidt process has been used to generate orthogonal polynomials. The nonhomogeneity of the plate is assumed to arise due to linear variations in elastic properties and density of the plate material with the in-plane coordinates. The two dimensional thickness variation is taken as the Cartesian product of linear variations along the two concurrent edges of the plate. Effect of various plate parameters such as nonhomogeneity parameters, aspect ratio together with thickness variation, and in-plane load on the natural frequencies has been illustrated for the first three modes of vibration for four different combinations of clamped, simply supported, and free edges correct to four decimal places. Three dimensional mode shapes for a specified plate for all the four boundary conditions have been plotted. By allowing the frequency to approach zero, the critical buckling loads in compression for various values of plate parameters have been computed correct to six significant digits. A comparison of results with those available in the literature has been presented.


Sign in / Sign up

Export Citation Format

Share Document