scholarly journals The Effect of Using Different Elastic Moduli on Vibration of Laminated CFRP Rectangular Plates

2019 ◽  
Vol 2 (1) ◽  
pp. 19-27
Author(s):  
Yoshihiro Narita ◽  
Michio Innami ◽  
Daisuke Narita

This paper deals with effects of using different sets of material constants on the natural frequencies of laminated composite rectangular plates. The plate is symmetrically laminated by thin layers composed of recently developed carbon fiber reinforced plastic (CFRP) materials. Numerical experiments are conducted by using a semi-analytical solution based on the thin plate theory and the lamination theory. The displacements are assumed to accommodate any combination of classical boundary conditions. The material property is expressed by a set of four elastic constants, and some typical sets of values are cited from the recent literature. Furthermore, a new standard set of discretized constants is proposed to uncover the underlying characteristics of the existing constants. The convergence study is carried out first, and the lowest five natural frequencies are calculated for five sets of classical boundary conditions including totally free through totally clamped cases. Next, a new definition of frequency parameters is introduced to promote more physically meaningful comparison among the obtained results, and the effect of using slightly different constants is clarified for unified comparison and insights. It is also discussed to derive approximate frequency formulas by linear regression analysis and to test accuracy of the formulas.


Author(s):  
Yu Fu ◽  
Jianjun Yao ◽  
Zhenshuai Wan ◽  
Gang Zhao

In this investigation, the free vibration analysis of laminated composite rectangular plates with general boundary conditions is performed with a modified Fourier series method. Vibration characteristics of the plates have been obtained via an energy function represented in the general coordinates, in which the displacement and rotation in each direction is described as an improved form of double Fourier cosine series and several closed-form auxiliary functions to eliminate any possible jumps and boundary discontinuities. All the expansion coefficients are then treated as the generalized coordinates and determined by Rayleigh-Ritz method. The convergence and reliability of the current method are verified by comparing with the results in the literature and those of Finite Element Analysis. The effects of boundary conditions and geometric parameters on the frequencies are discussed as well. Finally, numerous new results for laminated composite rectangular plates with different geometric parameters are presented for various boundary conditions, which may serve as benchmark solutions for future research.



1996 ◽  
Vol 63 (1) ◽  
pp. 110-115 ◽  
Author(s):  
Moon K. Kwak

This paper is concerned with the virtual mass effect on the natural frequencies and mode shapes of rectangular plates due to the presence of the water on one side of the plate. The approximate formula, which mainly depends on the so-called nondimensionalized added virtual mass incremental factor, can be used to estimate natural frequencies in water from natural frequencies in vacuo. However, the approximate formula is valid only when the wet mode shapes are almost the same as the one in vacuo. Moreover, the nondimensionalized added virtual mass incremental factor is in general a function of geometry, material properties of the plate and mostly boundary conditions of the plate and water domain. In this paper, the added virtual mass incremental factors for rectangular plates are obtained using the Rayleigh-Ritz method combined with the Green function method. Two cases of interfacing boundary conditions, which are free-surface and rigid-wall conditions, and two cases of plate boundary conditions, simply supported and clamped cases, are considered in this paper. It is found that the theoretical results match the experimental results. To investigate the validity of the approximate formula, the exact natural frequencies and mode shapes in water are calculated by means of the virtual added mass matrix. It is found that the approximate formula predicts lower natural frequencies in water with a very good accuracy.



1992 ◽  
Vol 59 (2S) ◽  
pp. S197-S204 ◽  
Author(s):  
Jean Wu-Zheng Zu ◽  
Ray P. S. Han

A free flexural vibrations of a spinning, finite Timoshenko beam for the six classical boundary conditions are analytically solved and presented for the first time. Expressions for computing natural frequencies and mode shapes are given. Numerical simulation studies show that the simply-supported beam possesses very peculiar free vibration characteristics: There exist two sets of natural frequencies corresponding to each mode shape, and the forward and backward precession mode shapes of each set coincide identically. These phenomena are not observed in beams with the other five types of boundary conditions. In these cases, the forward and backward precessions are different, implying that each natural frequency corresponds to a single mode shape.



1985 ◽  
Vol 52 (3) ◽  
pp. 536-542 ◽  
Author(s):  
K. S. Sivakumaran ◽  
C. Y. Chia

This paper is concerned with nonlinear free vibrations of generally laminated anisotropic elastic plates. Based on Reissner’s variational principle a nonlinear plate theory is developed. The effects of transverse shear, rotatory inertia, transverse normal stress, and transverse normal contraction or extension are included in this theory. Using the Galerkin procedure and principle of harmonic balance, approximate solutions to governing equations of unsymmetrically laminated rectangular plates including transverse shear, rotatory inertia, and transverse normal stress are formulated for various boundary conditions. Numerical results for the ratio of nonlinear frequency to linear frequency of unsymmetric angle-ply and cross-ply laminates are presented graphically for various values of elastic properties, fiber orientation angle, number of layers, and aspect ratio and for different boundary conditions. Present results are also compared with available data.



2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Xue Kai ◽  
Wang Jiufa ◽  
Li Qiuhong ◽  
Wang Weiyuan ◽  
Wang Ping

An analysis method is proposed for the vibration analysis of the Mindlin rectangular plates with general elastically restrained edges, in which the vibration displacements and the cross-sectional rotations of the mid-plane are expressed as the linear combination of a double Fourier cosine series and four one-dimensional Fourier series. The use of these supplementary functions is to solve the possible discontinuities with first derivatives at each edge. So this method can be applied to get the exact solution for vibration of plates with general elastic boundary conditions. The matrix eigenvalue equation which is equivalent to governing differential equations of the plate can be derived through using the boundary conditions and the governing equations based on Mindlin plate theory. The natural frequencies can be got through solving the matrix equation. Finally the numerical results are presented to validate the accuracy of the method.



1996 ◽  
Vol 118 (1) ◽  
pp. 122-134 ◽  
Author(s):  
U. Yuceoglu ◽  
F. Toghi ◽  
O. Tekinalp

This study is concerned with the free bending vibrations of two rectangular, orthotropic plates connected by an adhesively bonded lap joint. The influence of shear deformation and rotatory inertia in plates are taken into account in the equations according to the Mindlin plate theory. The effects of both thickness and shear deformations in the thin adhesive layer are included in the formulation. Plates are assumed to have simply supported boundary conditions at two opposite edges. However, any boundary conditions can be prescribed at the other two edges. First, equations of motion at the overlap region are derived. Then, a Levy-type solution for displacements and stress resultants are used to formulate the problem in terms of a system of first order ordinary differential equations. A revised version of the Transfer Matrix Method together with the boundary and continuity conditions are used to obtain the frequency equation of the system. The natural frequencies and corresponding mode shapes are obtained for identical and dissimilar adherends with different boundary conditions. The effects of some parameters on the natural frequencies are studied and plotted.



1989 ◽  
Vol 111 (1) ◽  
pp. 101-103 ◽  
Author(s):  
Wei-Cheun Liu ◽  
Stanley S. H. Chen

The problem vibration of rectangular orthotropic plates with variable thickness and mixed boundary conditions are solved by a modified energy method. A general expression is written for the deflection of the plate without aiming at any particular combination of boundary conditions. Boundary conditions are satisfied approximately by adjusting a set of so-called fixity factors. A computer program has been developed to solve for natural frequencies of plates with variable thicknesses and having different orthotropic properties.



1980 ◽  
Vol 22 (6) ◽  
pp. 297-304 ◽  
Author(s):  
J. N. Reddy ◽  
C. W. Ber ◽  
Y. S. Hsu ◽  
V. S. Reddy

Closed-form and finite-element solutions are presented for thermal bending and stretching of laminated composite plates. The material of each layer is assumed to be elastically and thermoelastically orthotropic and bimodular, i.e., having different properties depending upon whether the fibre-direction normal strain is tensile or compressive. The formulations are based on the thermoelastic version of the Whitney-Pagano laminated plate theory, which includes thickness shear deformations. Numerical results are obtained for deflections and neutral-surface positions associated with normal strains in both of the in-plane coordinates. The closed-form and finite-element results are found to be in good agreement.



2014 ◽  
Vol 14 (07) ◽  
pp. 1450020 ◽  
Author(s):  
Atteshamuddin S. Sayyad ◽  
Yuwaraj M. Ghugal

This paper presents the uniaxial and biaxial buckling analysis of rectangular plates based on new trigonometric shear and normal deformation theory. The theory accounts for the cosine distribution of the transverse shear strain through the plate thickness and on the free boundary conditions on the plate surfaces without using the shear correction factor. Governing equations and boundary conditions of the theory are derived by the principle of virtual work. The Navier type solutions for the buckling analysis of simply supported isotropic, transversely isotropic, orthotropic and symmetric cross-ply laminated composite rectangular plates subjected to uniaxial and biaxial compressions are presented. The effects of variations in the degree of orthotropy of the individual layers, side-to-thickness ratio and aspect ratio of the plate are examined on the buckling characteristics of composite plates. The present results are compared with those of the classical plate theory (CPT), first order shear deformation theory (FSDT) and exact three-dimensional (3D) elasticity theory wherever applicable. Good agreement is achieved of the present results with those of higher order shear deformation theory (HSDT) and elasticity theory.



Sign in / Sign up

Export Citation Format

Share Document