Energy Efficient Manufacturing of Power Electronics Substrates through Selective Laser Melting Technology

2016 ◽  
Vol 856 ◽  
pp. 188-194 ◽  
Author(s):  
Aarief Syed-Khaja ◽  
Jonathan Stecher ◽  
Alireza Esfandyari ◽  
Sven Kreitlein ◽  
Jörg Franke

In view of rising energy prices, high-energy consumption, and the associated environmental problems, in recent years the focus was shifted on the demand for energy and resource efficiency in the manufacturing sector. In the context of the project ‘PowerSLAM’ under Green Factory Bavaria Project, the feasibility of selective laser melting technology (SLM) for the production of ceramic circuit carriers is investigated. In this paper, an overview on the comparison of the state-of-the-art technologies with SLM technology is given in the perspective of energy and resource consumption. Parallelly the results of the investigations of SLM technology i.e. process feasibility and optimization for melting of copper based powders on ceramic substrates is summarized. The process parameters such as laser power, laser scan velocity and scan strategies are investigated. Based on the energy measurements, the process parameters are optimized accordingly for efficient process and overview on the resource and energy consumption is given. Demonstrators are built based on confined parameter combinations showing the process compatibility and the efficiencies are calculated accordingly. Here the approach bottom-up is considered to do the comprehensive process comparison and the energy efficiency value is considered in accessing the process and related energy efficiency.

2012 ◽  
Vol 516-517 ◽  
pp. 1184-1187
Author(s):  
Heng Sun ◽  
Dan Shu ◽  
Hong Mei Zhu

One-stage pre-cooled mixture refrigerant cycle can be applied in small-scale LNG plant and be special suitable for skit mounted LNG plant. It has different character with the C3MR cycle used in large-scale LNG plant. The optimization of the mixture refrigerant is carried out using HYSYS software. The effect of the main process parameters on the performance of the cycle is calculated and discussed. The result shows that appropriate ranges of the process parameters exist. Higher and lower values of the parameters will increase the energy consumption significantly. The results also indicate that the optimization of the one-stage pre-cooled mixture refrigerant cycle can obtain rather high energy efficiency that is competitive with that of the SMR which is widely employed in small-scale LNG plant.


2021 ◽  
Vol 1079 (3) ◽  
pp. 032042
Author(s):  
V I Alekseev ◽  
B K Barahtin ◽  
A S Zhukov ◽  
G A Panova ◽  
S G Petrova ◽  
...  

2014 ◽  
Vol 1 (4) ◽  
pp. 256-265 ◽  
Author(s):  
Hong Seok Park ◽  
Trung Thanh Nguyen

Abstract Energy efficiency is an essential consideration in sustainable manufacturing. This study presents the car fender-based injection molding process optimization that aims to resolve the trade-off between energy consumption and product quality at the same time in which process parameters are optimized variables. The process is specially optimized by applying response surface methodology and using nondominated sorting genetic algorithm II (NSGA II) in order to resolve multi-object optimization problems. To reduce computational cost and time in the problem-solving procedure, the combination of CAE-integration tools is employed. Based on the Pareto diagram, an appropriate solution is derived out to obtain optimal parameters. The optimization results show that the proposed approach can help effectively engineers in identifying optimal process parameters and achieving competitive advantages of energy consumption and product quality. In addition, the engineering analysis that can be employed to conduct holistic optimization of the injection molding process in order to increase energy efficiency and product quality was also mentioned in this paper.


Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 930 ◽  
Author(s):  
Martin Malý ◽  
Christian Höller ◽  
Mateusz Skalon ◽  
Benjamin Meier ◽  
Daniel Koutný ◽  
...  

The aim of this study is to observe the effect of process parameters on residual stresses and relative density of Ti6Al4V samples produced by Selective Laser Melting. The investigated parameters were hatch laser power, hatch laser velocity, border laser velocity, high-temperature preheating and time delay. Residual stresses were evaluated by the bridge curvature method and relative density by the optical method. The effect of the observed process parameters was estimated by the design of experiment and surface response methods. It was found that for an effective residual stress reduction, the high preheating temperature was the most significant parameter. High preheating temperature also increased the relative density but caused changes in the chemical composition of Ti6Al4V unmelted powder. Chemical analysis proved that after one build job with high preheating temperature, oxygen and hydrogen content exceeded the ASTM B348 limits for Grade 5 titanium.


Sign in / Sign up

Export Citation Format

Share Document