The Effect of Waterproof Processing Method on Properties of Calcium Silicate Board

2017 ◽  
Vol 863 ◽  
pp. 64-70
Author(s):  
Shi Bing Sun ◽  
Ke Yu Chen ◽  
Hai Yang Zhao ◽  
Ying Liang Tian ◽  
Dong Hua Liu ◽  
...  

In this paper, the effect of waterproof processing method on properties of calcium silicate board was studied in view of the requirement of calcium silicate board for building external wall. Experiments adopted waterborne epoxy resin in the test to do waterproof processing by three ways, which means taking the measure of waterproof processing respectively on two surfaces of the sample, on two surfaces and two lateral faces of the sample, and on all the six surfaces of the sample. The results showed that the sample could easily get wet from the side to the center, and it could only get satisfactory results when taking waterproof processing on all the six surfaces of the sample. Meanwhile, the water absorption rate of the sample decreased from 18.4% to 4.4% and its bending strength significantly got improved even after that the sample was treated separately by freeze-thaw cycles, dry-wet circulation, and soaking in hot water. Moreover, the performance of moisture deformation of the sample got reduced.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Fei Wang ◽  
Hao Fu ◽  
Guixiang Liu ◽  
Chaohui Wang ◽  
Sixin Yu

To further improve the road performance of waterborne epoxy resin, it was prepared by using the phase inversion method. The tensile properties, bending properties, impact resistance, and storage stability of waterborne epoxy resin were determined. The bonding properties of waterborne epoxy resin were analyzed. At the same time, their properties were compared with those of waterborne epoxy resin prepared by using the curing agent emulsification method. The performance of waterborne epoxy resin was comprehensively evaluated based on multi-index grey target decision model. The results show that the optimum preparation parameters for the preparation of waterborne epoxy resin by phase inversion method are shear time 1.5 h, shear temperature 60°C, and shear rate 1300–1500 r/min. The suitable contents of emulsifier A and B are 18% and 16%, respectively. The tensile strength, elongation at break, bending strength, bending deformation, and impact strength of waterborne epoxy resin prepared by emulsifier A can reach 34.46 MPa, 12.96%, 85.37 MPa, 19.42 mm, and 15.66 kJ/m2, respectively. It shows improved mechanical strength, deformation ability, impact resistance, and bonding performance. The comprehensive properties of waterborne epoxy resin prepared by emulsifier A are the best. It is suggested to use phase inversion method to prepare waterborne epoxy resin for roads.


2021 ◽  
Vol 274 ◽  
pp. 122059
Author(s):  
Fuqiang Liu ◽  
Mulian Zheng ◽  
Xianpeng Fan ◽  
Hongyin Li ◽  
Fei Wang ◽  
...  

2021 ◽  
Vol 298 ◽  
pp. 123839
Author(s):  
Qiang Xia ◽  
Jinbao Wen ◽  
Xiusheng Tang ◽  
Yeran Zhu ◽  
Zhifeng Xu ◽  
...  

2018 ◽  
Vol 136 (8) ◽  
pp. 47091 ◽  
Author(s):  
Sha He ◽  
Weiqu Liu ◽  
Maiping Yang ◽  
Chunhua Liu ◽  
Chi Jiang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Chichun Hu ◽  
Rui Li ◽  
Jianying Zhao ◽  
Zhen Leng ◽  
Wanwei Lin

To preserve the existing asphalt pavement and extend its service life, various preventive maintenance methods, such as chip seal, slurry seal, fog seal, and microsurfacing, have been commonly applied. Sand fog seal is one of such maintenance methods, which is based on the application of bitumen emulsion and sand. Thus, its performance is largely dependent on the properties of the bitumen emulsion and sand. This study aims to develop an improved sand fog seal method by using waterborne epoxy resin as an emulsion modifier. To this end, both laboratory tests and field trials were conducted. In the laboratory, the wet track abrasion and British pendulum test were performed to determine the optimum sand size for the sand fog seal, and the rubbing test was carried out to evaluate the wearing resistance of the sealing material. In the field, pavement surface regularity before and after the sand fog seal application was measured using the 3 m straightedge method, and the surface macrotexture and skid resistance were evaluated with the sand patch method and British pendulum test, respectively. The laboratory test results indicated that the optimum sand size range is 0.45–0.9 mm, and the sand fog seal with waterborne epoxy resin showed good wearing resistance and skid resistance. The field test results verified that both the pavement texture and skid resistance were substantially improved after sand fog sealing.


2018 ◽  
Vol 55 (8) ◽  
pp. 618-629 ◽  
Author(s):  
Sha He ◽  
Weiqu Liu ◽  
Chunhua Liu ◽  
Chi Jiang ◽  
Maiping Yang ◽  
...  

Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1708 ◽  
Author(s):  
Wang ◽  
Teng ◽  
Yang ◽  
You ◽  
Zhang ◽  
...  

In this article, the intumescent flame-retardant microsphere (KC-IFR) was prepared by inverse emulsion polymerizations, with the use of k-carrageenan (KC) as carbon source, ammonium polyphosphate (APP) as acid source, and melamine (MEL) as gas source. Meanwhile, benzoic acid functionalized graphene (BFG) was synthetized as a synergist. A “four-source flame-retardant system” (KC-IFR/BFG) was constructed with KC-IFR and BFG. KC-IFR/BFG was blended with waterborne epoxy resin (EP) to prepare flame-retardant coatings. The effects of different ratios of KC-IFR and BFG on the flame-retardant properties of EP were investigated. The results showed that the limiting oxygen index (LOI) values increased from 19.7% for the waterborne epoxy resin to 28.7% for the EP1 with 20 wt% KC-IFR. The addition of BFG further improved the LOI values of the composites. The LOI value reached 29.8% for the EP5 sample with 18 wt% KC-IFR and 2 wt% BFG and meanwhile, UL-94 test reached the V-0 level. In addition, the peak heat release (pHRR) and smoke release rate (SPR) of EP5 decreased by 63.5% and 65.4% comparing with EP0, respectively. This indicated the good flame-retardant and smoke suppression property of EP composites coating.


Sign in / Sign up

Export Citation Format

Share Document