Study on the Cutting Temperature and Chips Formation during Turning of Pure Titanium

2018 ◽  
Vol 880 ◽  
pp. 321-326
Author(s):  
Dumitru Panduru ◽  
Emil Nicusor Patru ◽  
Nicolae Craciunoiu ◽  
Marin Bica

In this paper some experimental determinations on the temperature during the turning of the pure titanium are done, using different cutting conditions. The results are presented as graphical dependencies and also as a screen capture of the values obtained using an adequate technique for registered the temperature during the turning process. Some pictures of the chips shape was captured and presented in this paper

2018 ◽  
Vol 880 ◽  
pp. 315-320
Author(s):  
Emil Nicusor Patru ◽  
Dumitru Panduru ◽  
Nicolae Craciunoiu ◽  
Marin Bica

In this paper some experimental determinations on the temperature during the milling process of pure titanium is conducted, using different cutting conditions. The results are presented as graphical dependencies and also as a screen capture of the values obtained using an adequate technique for temperature of the cutting process. Some pictures of the chips shape captured during milling process of the pure titanium bare are presented.


2010 ◽  
Vol 443 ◽  
pp. 382-387 ◽  
Author(s):  
Somkiat Tangjitsitcharoen ◽  
Suthas Ratanakuakangwan

This paper presents the additional work of the previous research in order to verify the previously obtained cutting condition by using the different cutting tool geometries. The effects of the cutting conditions with the dry cutting are monitored to obtain the proper cutting condition for the plain carbon steel with the coated carbide tool based on the consideration of the surface roughness and the tool life. The dynamometer is employed and installed on the turret of CNC turning machine to measure the in-process cutting forces. The in-process cutting forces are used to analyze the cutting temperature, the tool wear and the surface roughness. The experimentally obtained results show that the surface roughness and the tool wear can be well explained by the in-process cutting forces. Referring to the criteria, the experimentally obtained proper cutting condition is the same with the previous research except the rake angle and the tool nose radius.


2016 ◽  
Vol 823 ◽  
pp. 507-512
Author(s):  
Mourad Abdelkrim ◽  
Mourad Brioua ◽  
Abderrahim Belloufi ◽  
Abdelhafid Gherfi

In machining operation, the quality of surface finish is an important requirement for many turned work pieces. cutting temperature is one of the most important parameters in determining the cutting performance and tool life. the objective for this work is to estimate the cutting temperature in 3D model on tool-chip interface and the interface temperature during turning process, using the digital simulation software COMSOL Multiphysics.The tool–chip interface temperature results obtained from experimental results by using C45 medium carbon steel work piece with natural contact tools, without the application of cooling and lubricating agents and a K type thermocouple technique was used for estimating cutting temperatures in a turning operation.This procedure facilitates the determination of the temperature at tool-chip interface in dry turning process, which is still a challenge for existing experimental and numerical methods.


2010 ◽  
Vol 34-35 ◽  
pp. 1605-1608 ◽  
Author(s):  
Yong Tang ◽  
Qiang Wu ◽  
Bang Yan Ye ◽  
X.F. Hu ◽  
Yu Zhong Li ◽  
...  

The key point for improving efficiency of Electric Hot Machining (EHM) is to keep an optimal heating temperature in cutting process. This paper introduces the principle and system for realizing optimal heating current control, Electric Hot Machining is applied to minipore drill of hard-material, a method of rapid determining the optimal heating current under various cutting conditions in electric hot drilling is proposed based on the conservation law of optimum cutting temperature. For a certain combination of tool and workpiece, the heating current in different cutting conditions can be obtained by changing heating current and measuring the cutting temperature in electric hot drilling.


Author(s):  
Samya Dahbi ◽  
Latifa Ezzine ◽  
Haj El Moussami

This paper presents the modeling of cutting performances in turning of 2017A aluminium alloy at four turning parameters: cutting speed, feed rate, depth of cut, and tool nose radius. These performances include: surface roughness, cutting forces, cutting temperature, material removal rate, cutting power, and specific cutting pressure. The experimental data were collected by conducting turning experiments on a Computer Numerically Controlled lathe and by measuring the cutting performances with forces measuring chain, an infrared camera, and a roughness tester. The collected data were used to develop multiple regression models for the pre-cited cutting performances and investigate the effects of turning parameters and their interactions on responses. To evaluate the accuracy of the developed models, two performance criteria were used: Correlation Coefficient (R²) and Average Percentage Error (APE). It was clearly seen that the multiple regression models estimate the cutting performances with high accuracy: R²>94% and APE<7%. Therefore, this method is an effective tool for modeling the cutting performances in turning process.


2014 ◽  
Vol 695 ◽  
pp. 676-679 ◽  
Author(s):  
Abdullah Yassin ◽  
Chong Yaw Teo

This paper presents an experimental investigation on effects of pressure and nozzle angle of minimal quantity lubrication (MQL) on cutting temperature and flank wear in turning. In manufacturing industries, there are always demands for the optimum cutting conditions for the most economical manufacturing cost. Hence, reduction in tool wear is essential for less expenditure with the knowledge of optimum cutting conditions of MQL. MQL, also known as near dry machining, has been acknowledged as an effective cooling technique in machining by applying vegetable oils in replacing the conventional flooding method due to environmental issues. By varying the operating pressures and nozzle angle with respect to the cutting zone, cutting temperature and flank wear are measured using a calibrated tool work thermocouple and SPG video microscope. Comparison was made between dry cutting, water mist cooling and MQL method with palm oil. Results showed that MQL with palm oil exhibits best cooling efficiency at 5 bar pressure and nozzle angle of 20o with reduction of 35% in tool wear and 23% in cutting temperature at higher cutting speeds.


2012 ◽  
Vol 229-231 ◽  
pp. 517-520 ◽  
Author(s):  
Zhi Min Zhou ◽  
Xiao Yan Li ◽  
Yuan Xin Qu ◽  
Jian Na

Titanium alloys, as difficult-to-cut materials, have poor machinability due to their superior mechanical properties, heat resistance and corrosion resistance. High cutting temperature and great cutting force that will greatly accelerate tool wear often occurs in titanium alloys cutting process. In this paper, an ultrasonic vibration turning method was used to lower diamond tool wear during TC4 titanium alloy turning process. Ultrasonic vibration turning tests were carried out with various cutting parameters. Experimental results indicated that there’s a significant reduction of the wear rate of diamond tools by means of ultrasonic vibration in TC4 turning process. For ultrasonic vibration turning, spindle speed, the amplitude and frequency of vibration of the tool are the greatest impact of tool wear, followed by feed rate, then the cutting depth.


Sign in / Sign up

Export Citation Format

Share Document