optimal heating
Recently Published Documents


TOTAL DOCUMENTS

109
(FIVE YEARS 28)

H-INDEX

11
(FIVE YEARS 2)

Polymers ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 3282
Author(s):  
Yanis Abdelhamid Gueche ◽  
Noelia M. Sanchez-Ballester ◽  
Bernard Bataille ◽  
Adrien Aubert ◽  
Jean-Christophe Rossi ◽  
...  

In selective laser sintering (SLS), the heating temperature is a critical parameter for printability but can also be deleterious for the stability of active ingredients. This work aims to explore the plasticizing effect of di-carboxylic acids on reducing the optimal heating temperature (OHT) of polymer powder during SLS. First, mixtures of copovidone and di-carboxylic acids (succinic, fumaric, maleic, malic and tartaric acids) as well as formulations with two forms of ibuprofen (acid and sodium salt) were prepared to sinter solid oral forms (SOFs), and their respective OHT was determined. Plasticization was further studied by differential scanning calorimetry (DSC) and Fourier-transform infrared spectroscopy (FTIR). Following this, the printed SOFs were characterized (solid state, weight, hardness, disintegration time, drug content and release). It was found that all acids (except tartaric acid) reduced the OHT, with succinic acid being the most efficient. In the case of ibuprofen, only the acid form demonstrated a plasticizing effect. DSC and FTIR corroborated these observations showing a decrease in the glass transition temperature and the presence of interactions, respectively. Furthermore, the properties of the sintered SOFs were not affected by plasticization and the API was not degraded in all formulations. In conclusion, this study is a proof-of-concept that processability in SLS can improve with the use of di-carboxylic acids.


2021 ◽  
Author(s):  
Vinko Lesic ◽  
Filip Vrbanc ◽  
Nikica Peric ◽  
Anita Banjac ◽  
Hrvoje Novak ◽  
...  

Author(s):  
А.В. БОРИСЕВИЧ ◽  
Т.И. ЧАЛЫХ

Проведено исследование процесса термического окисления подсолнечного и кокосового масел при 175°С в условиях поточного обжаривания в них картофеля и куриных наггетсов с отбором проб растительного масла через каждый час работы. Для определения количества продуктов окисления был использован метод спектрофотометрии. Установлено, что после 10 ч проведения обжарки исследованные фритюрные масла были пригодны для дальнейшего использования (Е < 15). Показатель оптической плотности кокосового масла независимо от вида обжариваемого в нем продукта в течение всего эксперимента был ниже аналогичного показателя подсолнечного масла. Предложена оптимальная температура нагрева кокосового масла для обжаривания во фритюре – не более 0,9 от температуры точки дымления. Показано более активное накопление вторичных продуктов окисления во фритюрном масле при обжаривании продукта животного происхождения по сравнению с обжариванием продукта растительного происхождения, что можно объяснить наличием в составе картофеля ингибиторов окисления (пероксидаза, каталаза, витамин С). The study of the process of thermal oxidation of sunflower and coconut oils at 175°C under conditions of in-line frying of potatoes and chicken nuggets in them with the sampling of vegetable oil every hour of operation was carried out. To determine the amount of oxidation products the method of spectrophotometry was used. It was found that after 10 hours of roasting, the studied fryer oils were suitable for further use (E < 15). The optical density index of coconut oil, regardless of the type of product fried in it, was lower than that of sunflower oil throughout the experiment. The optimal heating temperature of coconut oil for deep frying is proposed-no more than 0,9 of the temperature of the smoking point. A more active accumulation of secondary oxidation products in deep-frying oil is shown when frying an animal product compared to frying a vegetable product, which can be explained by the presence of oxidation inhibitors (peroxidase, catalase, vitamin C) in the composition of potatoes.


2021 ◽  
Vol 11 (12) ◽  
pp. 5505
Author(s):  
Costica Caizer

In this paper, we present a theoretical study on the maximum specific loss power in the admissible biological limit (PsM)l for CoFe2O4 ferrimagnetic nanoparticles, as a possible candidate in alternative and non-invasive cancer therapy by superparamagnetic hyperthermia. The heating time of the nanoparticles (Δto) at the optimum temperature of approx. 43 °C for the efficient destruction of tumor cells in a short period of time, was also studied. We found the maximum specific loss power PsM (as a result of superparamegnetic relaxation in CoFe2O4 nanoparticles) for very small diameters of the nanoparticles (Do), situated in the range of 5.88–6.67 nm, and with the limit frequencies (fl) in the very wide range of values of 83–1000 kHz, respectively. Additionally, the optimal heating temperature (To) of 43 °C was obtained for a very wide range of values of the magnetic field H, of 5–60 kA/m, and the corresponding optimal heating times (Δto) were found in very short time intervals in the range of ~0.3–44 s, depending on the volume packing fraction (ε) of the nanoparticles. The obtained results, as well as the very wide range of values for the amplitude H and the frequency f of the external alternating magnetic field for which superparamagnetic hyperthermia can be obtained, which are great practical benefits in the case of hyperthermia, demonstrate that CoFe2O4 nanoparticles can be successfully used in the therapy of cancer by superaparamagnetic hyperthermia. In addition, the very small size of magnetic nanoparticles (only a few nm) will lead to two major benefits in cancer therapy via superparamagnetic hyperthermia, namely: (i) the possibility of intracellular therapy which is much more effective due to the ability to destroy tumor cells from within and (ii) the reduced cell toxicity.


Foods ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 1135
Author(s):  
Gabriel Tirtawijaya ◽  
Seung Rok Kim ◽  
Woo Hee Cho ◽  
Jae Hak Sohn ◽  
Jin-Soo Kim ◽  
...  

The coronavirus disease pandemic has contributed to increasing convenience in food preferences. Home meal replacement (HMR) products are ready-to-eat, -cook, or -heat foods, providing convenience for consumers. We developed a HMR product containing mackerel as a protein- and lipid-rich source using various food-processing technologies to maintain its nutritional content and prolong shelf life. The HMR product contained mackerel, radish, and sauce in a ratio of 5:1:4. Raw frozen mackerels were thawed by using a high-frequency defroster before being braised using a superheated steam roaster. Response surface methodology was employed to obtain the optimal heating conditions of 181 °C for 9 min. The final test HMR product was packed in a polypropylene plastic bowl prior to freezing at −35 °C for 1 h using a quick freezing system. The HMR product developed using these technologies exhibited stable microbiological and chemical properties for 90 days of storage. Sensory scores gradually decreased with increasing storage temperature and time. Protein content in the HMR product was 13%, 40% of which comprised essential amino acids; lipid content was 13.4%, 18% of which was composed of docosahexaenoic acid. The HMR product can preserve its quality and is considered safe for consumption for up to 40 months of storage at −18 °C.


Minerals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 319
Author(s):  
Hongqing Song ◽  
Jie Zhang ◽  
Yueqiang Sun ◽  
Yongping Li ◽  
Xianguo Zhang ◽  
...  

The in-situ utilization of lunar helium-3 resource is crucial to manned lunar landings and lunar base construction. Ilmenite was selected as the representative mineral which preserves most of the helium-3 in lunar soil. The implantation of helium-3 ions into ilmenite was simulated to figure out the concentration profile of helium-3 trapped in lunar ilmenite. Based on the obtained concentration profile, the thermal release model for molecular dynamics was established to investigate the diffusion and release of helium-3 in ilmenite. The optimal heating temperature, the diffusion coefficient, and the release rate of helium-3 were analyzed. The heating time of helium-3 in lunar ilmenite under actual lunar conditions was also studied using similitude analysis. The results show that after the implantation of helium-3 into lunar ilmenite, it is mainly trapped in vacancies and interstitials of ilmenite crystal and the corresponding concentration profile follows a Gaussian distribution. As the heating temperature rises, the cumulative amounts of released helium-3 increase rapidly at first and then tend to stabilize. The optimal heating temperature of helium-3 is about 1000 K and the corresponding cumulative release amount is about 74%. The diffusion coefficient and activation energy of helium-3 increase with the temperature. When the energy of helium-3 is higher than the binding energy of the ilmenite lattice, the helium-3 is released rapidly on the microscale. Furthermore, when the heating temperature increases, the heating time for thermal release of helium-3 under actual lunar conditions decreases. For the optimal heating temperature of 1000 K, the thermal release time of helium-3 is about 1 s. The research could provide a theoretical basis for in-situ helium-3 resources utilization on the moon.


2021 ◽  
Vol 11 (2) ◽  
pp. 647
Author(s):  
Michal Frivaldsky ◽  
Miroslav Pavelek ◽  
Tibor Donic

This paper deals with the issues relevant for precise finite element method (FEM) modeling of thin molybdenum plates’ induction heating. The proposed methodology describes the step-by-step Multiphysics (electro-thermal) design approach, verified by the experimental measurements. Initially, it was observed that the relative error between model and experimental set-up is within the 1.2% up to 2.5% depending on the location of the measuring points. Further research was focused on the enhancement of the simulation model in the form of its parametrization. It means that it is easy to define the induction coil’s operational parameters and geometrical properties (ferrite shape, operating frequency, the distance between plate and heating element, the value of coil current, etc.). The target of this approach is to be able to determine the optimal operational settings targeting the required heating performance of thin molybdenum plates. One of the main requirements regarding the optimal heating process is temperature distribution within the molybdenum plate’s surface. The proposed model makes it possible to obtain information on optimal operational conditions based on the received results.


Sign in / Sign up

Export Citation Format

Share Document