Determining the Contact-Length and Critical-Value for Deformed Foundation with Curvature Variation in Mining Area

2011 ◽  
Vol 90-93 ◽  
pp. 714-721
Author(s):  
Wei Min Liang ◽  
Jun Feng Qiao ◽  
Zeng Zhang Guo

In mining area, the ground surface level is lowered and curved after the claps of cover-layers of coal-seams evacuated regions. The curvature variation of ground surface causes the variation of contact-surface relation between the structure base and the ground foundation. For this research, the position of maximum curvature variation point is predicted. At this position, for the potentially worst case, the contact-length between structure base and ground foundation is calculated. Then, the internal bending moment within the structure base caused by the ground foundation curvature variation is formulated by taking the contact-length as variable. The results show that the base bending moment is a function of fourth power of contact-length. Based on this result, the critical value of contact-length in mining area is established. Hence, the critical contact-length concept can be taken as a measure of curvature variation in mining area.

2021 ◽  
Vol 11 (10) ◽  
pp. 4432
Author(s):  
Jiseong Kim ◽  
Seong-Kyu Yun ◽  
Minsu Kang ◽  
Gichun Kang

The purpose of this study is to grasp the behavior characteristics of a single batter pile under vertical load by performing a model test. The changes in the resistance of the pile, the bending moment, etc. by the slope of the pile and the relative density of the ground were analyzed. According to the results of the test, when the relative density of the ground was medium and high, the bearing capacity kept increasing when the angle of the pile moved from a vertical position to 20°, and then decreased gradually after 20°. The bending moment of the pile increased as the relative density of the ground and the batter angle of the pile increased. The position of the maximum bending moment came closer to the ground surface as the batter angle of the pile further increased, and it occurred at a point of 5.2~6.7 times the diameter of the pile from the ground surface.


Author(s):  
Neetu Prasad ◽  
Graeme King ◽  
Arfeen Najeeb

Abstract Thermally insulated hot buried pipelines pose a unique set of challenges. This paper discusses those challenges and how they were met during design and construction of the 150 km long Husky LLB Direct Pipeline, the longest thermally insulated oil pipeline in Canada. Thermal insulation materials are soft and can be easily damaged during construction and backfilling, and by large restraining forces at bends when the pipeline is operating at high temperatures. The large temperature difference between pipeline installation temperature and maximum operating temperature leads to large axial compressive forces that can cause movement at bends, crush insulation, increase temperatures at ground surface, cause loss of restraint, and in the worst case, lead to upheaval buckling and loss of containment. Special design and construction features to deal with these challenges, including insulation specifications, insulation of pipe bends, pipeline pre-straining, long radius bends, deeper burial, and pipeline roping, were therefore necessary. After pipe has been insulated with polyurethane foam it cannot be bent in standard field bending machines used for uninsulated pipes because the foam is too soft. The induction bends and cold bends that are shop insulated after bending are expensive. The Project minimized the number of these expensive insulated bends by using an engineered ditch bottom profile. This meant that shop bends were only needed to reduce excavation depth at sharp changes in ground surface elevation where the roped profile required excessive grading. Care was therefore necessary in the selection and development of specifications for the insulation system and shop fabricated bends, and to design and construct a ditch profile to minimize forces on the insulation and control upheaval buckling. Close co-ordination with vendors and the construction contractor was crucial for a successful and timely completion.


2019 ◽  
Vol 56 (11) ◽  
pp. 1545-1556 ◽  
Author(s):  
L.M. Lalicata ◽  
A. Desideri ◽  
F. Casini ◽  
L. Thorel

An experimental study was carried out to investigate the effects of soil partial saturation on the behaviour of laterally loaded piles. The proposed study was conducted by means of centrifuge tests at 100g, where a single vertical pile was subjected to a combination of static horizontal load and bending moment. The study was conducted on a silty soil characterized with laboratory testing under saturated and unsaturated conditions. During flight, two different positions of water table were explored. The influence of density was investigated by compacting the sample with two different void ratios. Finally, the effects of a variation of saturation degree on the pile response under loading were studied by raising the water table to the ground surface. Data interpretation allows drawing different considerations on the effects of partial saturation on the behaviour of laterally loaded piles. As expected, compared to saturated soils, partial saturation always leads to a stiffer and resistant response of the system. However, the depth of the maximum bending moment is related to the position of the water table and the bounding effects induced by partial saturation appear to be more important for loose soils.


1984 ◽  
Vol 51 (3) ◽  
pp. 519-525 ◽  
Author(s):  
P. Seide

The large deflections of a simply supported beam, one end of which is free to move horizontally while the other is subjected to a moment, are investigated by means of inextensional elastica theory. The linear theory is found to be valid for relatively large angles of rotation of the loaded end. The beam becomes transitionally unstable, however, at a critical value of the bending moment parameter MIL/EI equal to 5.284. If the angle of rotation is controlled, the beam is found to become unstable when the rotation is 222.65 deg.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Denghong Chen ◽  
Chao Li ◽  
Xinzhu Hua ◽  
Xiaoyu Lu ◽  
Yongqiang Yuan ◽  
...  

Taking the occurrence conditions of the hard main roof in the deep 13-1 coal mining roadway in Huainan mining area as the research object, based on the mechanical parameters of the surrounding rock and the stress state of the main roof obtained by numerical simulation, a simply supported beam calculation model was established based on the damage factor D, main roof support reaction RA, RB, and critical range C (9 m) and B (7 m) at the elastoplastic junction of the solid coal side and mining face side (hereinafter referred to as “junction”). Considering that the damage area still has a large bearing capacity, the vertical stress of the main roof at the junction is K1γH (0.05γh, 0.15γh, and 0.25γh) and K2γH (0.01γh, 0.10γh, and 0.2γh). The maximum deflection is 21 mm, 324 mm, and 627.6 mm, respectively. According to the criterion of tensile failure, the maximum bending moment of the top beam is 209 mN·m at the side of the working face 3.1 m away from the roadway side when K1 = 0.15 and K2 = 0.10, and the whole hard main roof is in tensile failure except the junction. To control the stability of the top beam and simplify the supporting reaction to limit the deformation of the slope angle, RC and RD are used to construct the statically indeterminate beam. By adding an anchor cable and advance self-moving support to the roadway side angle, the problem of difficult control of the surrounding rock with a large deformation of the side angle roof is solved, which provides a reference for roof control under similar conditions.


1937 ◽  
Vol 41 (319) ◽  
pp. 595-608
Author(s):  
H. Noth ◽  
W. Polte

The main reasons why trouble due to ice formation on aircraft was not experienced so much in the earlier days of flying as now were two-fold, (a) The greatly restricted amount of flying done during the winter and (b) the absence of means whereby flight in cloud for any considerable length of time was possible.The degree to which ice forms, however, differs widely. Since much depends on the relative speed of the aircraft, free balloons are practically excluded. In the worst case ice cannot form on such aircraft to the extent to which heavy glazed frost is observed on the ground, unless the balloon pilot is a very bad navigator and remains in the danger zone longer than would be required for the ground surface to be coated with glazed frost.


Author(s):  
Günther F. Clauss ◽  
Marco Klein ◽  
Carlos Guedes Soares ◽  
Nuno Fonseca

In the last years the identification and investigation of critical wave sequences regarding offshore structure responses became one of the main topics in the ocean engineering community. Thereby the area of interest covers the entire field of application spectra at sea — from efficient and economic offshore operations in moderate sea states to reliability as well as survival in extreme wave conditions. For most cases, the focus lies on limiting criteria for the design, such as maximum global loads, maximum relative motions between two or more vessels or maximum accelerations, at which the floating structure has to operate or to survive. These criteria are typically combined with a limiting characteristic sea state (Hs, Tp) or a rogue wave. For the investigation of offshore structures as well as the identification of critical wave sequences, different approaches are available — most of them are based on linear transfer functions as it is an efficient procedure for the fast holistic evaluation. But, for some cases the linear method approach implies uncertainties due to nonlinear response behavior, in particular in extreme wave conditions. This paper presents an approach to these challenges, a response based optimization tool for critical wave sequence detection. This tool, which has been successfully introduced for the evaluation of the applicability of a multi-body system based on the linear method approach, is adjusted to a nonlinear task — the vertical bending moment of a chemical tanker in extreme wave conditions. Therefore a nonlinear strip theory solver is introduced into the optimization routine to capture the nonlinear effects on the vertical bending moment due to steep waves acting on large bow flares. The goal of the procedure is to find a worst case wave sequence for a certain critical sea state. This includes intensive numerical investigation as well as model test validation.


2018 ◽  
Vol 53 ◽  
pp. 03040
Author(s):  
Wu Zuoqi ◽  
Wang Guoku ◽  
Zhao Liqin

The law of surface cracks caused by coal mining in ther thin bedrock and thick unconsolidated layer was studied in Yu-Shen-Fu mining area. The crack development in the overlying strata of the coal mining face was detected by drilling survey technology, the whole process of the ground surface crack dynamic evolution was carried out by similar material simulation, and the law of surface cracks evolution was verified by on-site tracking measurement. The study reached the regulation of the overlying strata failure and dynamic evolution of surface cracks caused by coal mining under thin bedrock and thick unconsolidated layer in Yu-Shen-Fu mining area, which can provide theoretical support for the ecological restoration of western mining area.


2012 ◽  
Vol 594-597 ◽  
pp. 86-91
Author(s):  
Zu Qiang Xiong ◽  
Jun He ◽  
Lei Lei Zhao

It is an important way to realize mine intensive production by increasing of the coal face length. During the transformation period of mining methods about thick coal seams, the character parameters of surface movement and deformation will be provided to guarantee scientifically mining of thick coal seams in Jincheng mining area. In this paper, numerical simulation, theoretical analysis and field measurement are used for studying the influence of coal face length on surface movement and deformation in the condition of large height mining. The results show that the separated strata space range extended with the increasing of coal face length and advancing distance, the surface movement and deformation become more violent, the mining influenced range also gradually expands, and the maximum surface subsidence and horizontal displacement increases gradually in form of linear relationship. In the condition of fast mining, the duration of abscission layer reduces, and the surface movement and deformation shows obviously hysteretic and zonal characteristic.


Sign in / Sign up

Export Citation Format

Share Document