Preparation and Photocatalytic Activity of Titanium Dioxide-organosilicone-Heteropolyacid Photocatalysts

2014 ◽  
Vol 1015 ◽  
pp. 488-491
Author(s):  
Ming Jun Piao ◽  
Jia Ting Feng ◽  
Qian Nan Li ◽  
Sheng Nan Li ◽  
Xiao Ke Han ◽  
...  

TiO2-organosilicone based hybrid catalysts functioned by Keggin-type heteropolyacid, TiO2-Si (Et)Si-H3PW12O40, were prepared via one-pot co-condensation method in the presence of a triblock copolymer surfactant (F127). The materials were well characterized by FT-IR, UV-vis DRS spectroscopy methods, and X-ray diffraction analysis to confirm the hybrid structure, to investigate correlation among TiO2-organosilicone matrix and H3PW12O40. Phtocatalytic tests show that, with a little amount of organosilicone and hybridization, the composite exhibits higher photocatalytic activity when decomposing the Rhodamine B ( RhB ) than anatase TiO2.

2012 ◽  
Vol 610-613 ◽  
pp. 68-71
Author(s):  
Ming Jun Piao ◽  
Kai Xu ◽  
Jiang Lei Hu ◽  
Long Zhang

TiO2-based hybrid catalysts functioned by Keggin-type heteropolyacid, H3PW12O40/ TiO2, were prepared via one-pot co-condensation method in the presence of a triblock copolymer surfactant (F127). The materials were well characterized by FT-IR, UV-vis DRS spectroscopy methods, and X-ray diffraction analysis to confirm the structural integrity of the Keggin unit in the hybrid materials, to investigate correlation between TiO2 matrix and H3PW12O40. Phtocatalytic tests show the composite exhibits higher photocatalytic activity to decompose the Rhodamine B ( RhB ) than anatase TiO2.


NANO ◽  
2018 ◽  
Vol 13 (06) ◽  
pp. 1850063 ◽  
Author(s):  
Jinhua Zhang ◽  
Huiyue Qian ◽  
Wencheng Liu ◽  
Hao Chen ◽  
Yang Qu ◽  
...  

A heterostructural composite composed of g-C3N4 and Bi2O3 was achieved by the one-pot and thermal-induced polycondensation method using melamine and Bi(NO[Formula: see text] as precursor at 550[Formula: see text]C under air atmosphere. The crystalline phase, components and morphologies of the as-prepared composites were investigated by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy (TEM). Besides, the photocatalytic activity of composites was evaluated by degrading RhB aqueous solution at room temperature under visible light irradiation. Compared with bulk g-C3N4, the photocatalytic efficiency of the 0.5% Bi2O3/g-C3N4 (Bi–CN) was increased by up to four times. The introduction of Bi2O3 enhances not only the light absorption ability, but also the separation of photogenerated electron–hole pairs.


Author(s):  
Nurul Sahida Hassan ◽  
Nurul Jamilah Roslani ◽  
Aishah Abdul Jalil ◽  
Sugeng Triwahyono ◽  
Nur Fatien Salleh ◽  
...  

In recent years, dyes are one of the major sources of the water contamination that lead to environmental problems. For instance, Rhodamine B (RhB) which was extensively used as a colorant in textile industries is toxic and carcinogenic. Among many techniques, photocatalytic degradation become the promising one to remove those dyes from industrial wastewater. Recently, graphene has shown outstanding performance in this application due to its intrinsic electron delocalisation which promotes electron transport between composite photocatalyst and pollutant molecules. While, copper oxide (CuO) is well-known has a lower bandgap energies compared to other semiconductors. Therefore, in this study, copper oxide supported on graphene (CuO/G) was prepared and its photocatalytic activity was tested on degradation of RhB. The catalysts were characterized by X-Ray Diffraction (XRD) and Fourier Transform Infrared (FTIR) Spectroscopy. The results showed that the interaction between copper and graphene support could enhance the photocatalytic activity. The 5 wt% CuO/G was found to give the highest degradation (95%) of 10 mg L-1 of RhB solution at pH 7 using 1 g L-1 catalyst after 4 hours under visible light irradiation. The photodegradation followed the pseudo first-order Langmuir-Hinshelwood kinetic model. This study demonstrated that the CuO/G has a potential to be used in photocatalytic degradation of various organic pollutants.


2021 ◽  
Vol 11 (3) ◽  
pp. 215
Author(s):  
Achraf El Hallaoui ◽  
Tourya Ghailane ◽  
Soukaina Chehab ◽  
Youssef Merroun ◽  
Rachida Ghailane ◽  
...  

<p>This work aims to prepare a new bimetallic phosphate catalyst using a new simple and effective method. This new catalyst was ready for the first time by a modification of Triple Super Phosphate (TSP) fertilizer with silver sulfate (AgSO<sub>4</sub>), followed by the impregnation of the aluminum atoms using aluminum nitrate (Al(NO<sub>3</sub>)<sub>3</sub>). The use of Al/Ag<sub>3</sub>PO<sub>4</sub>, for the first time as a heterogeneous catalyst in organic chemistry, offers a new, efficient, and green pathway for synthesizing 1,2-dihydro-l-phenyl-3H-naphth[1,2-e]-[1,3]oxazin-3-one derivatives by one-pot three-component cyclocondensation of b-naphthol, aryl aldehyde, and urea. The structure and the morphology of the prepared catalyst were characterized by spectroscopic methods such as X-Ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FT-IR), and dispersive X-ray spectrometry coupled with a scanning electron microscope (EDX-SEM). In addition, the optimization of the reaction parameters was carried out considering the effect of catalyst amount, the temperature, and the solvent. The procedure described herein allowed a comfortable preparation of oxazine derivatives with excellent yields, short reaction times, and in the absence of organic solvent.</p>


Nanomaterials ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1671 ◽  
Author(s):  
Weike Zhang ◽  
Yanrong Zhang ◽  
Kai Yang ◽  
Yanqing Yang ◽  
Jia Jia ◽  
...  

A silicon dioxide/carbon nano onions/titanium dioxide (SiO2/CNOs/TiO2) composite was synthesized by a simple sol-gel method and characterized by the methods of X-ray diffraction (XRD), scanning electronic microscope (SEM), X-ray photoelectron spectroscopy (XPS), Brunauer–Emmett–Teller (BET), Fourier transform infrared (FTIR), thermogravimetric analysis (TG), differential scanning calorimeter (DSC) and UV-Vis diffuse reflectance spectra (UV-Vis DRS). In this work, the photocatalytic activity of the SiO2/CNOs/TiO2 photocatalyst was assessed by testing the degradation rate of Rhodamine B (RhB) under visible light. The results indicated that the samples exhibited the best photocatalytic activity when the composite consisted of 3% CNOs and the optimum dosage of SiO2/CNOs/TiO2(3%) was 1.5 g/L as evidenced by the highest RhB degradation rate (96%). The SiO2/CNOs/TiO2 composite greatly improved the quantum efficiency of TiO2. This work provides a new option for the modification of subsequent nanocomposite oxide nanoparticles.


2019 ◽  
Vol 2019 ◽  
pp. 1-11 ◽  
Author(s):  
H. Letifi ◽  
Y. Litaiem ◽  
D. Dridi ◽  
S. Ammar ◽  
R. Chtourou

In this paper, we have reported a novel photocatalytic study of vanadium-doped SnO2 nanoparticles (SnO2: V NPs) in rhodamine B degradation. These NPs have been prepared with vanadium concentrations varying from 0% to 4% via the coprecipitation method. Structural, morphological, and optical properties of the prepared nanoparticles have been investigated by X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, transmission electron microscope (TEM), and UV-Vis and photoluminescence (PL) spectroscopy. Structural properties showed that both undoped and SnO2: V NPs exhibited the tetragonal structure, and the average crystal size has been decreased from 20 nm to 10 nm with the increasing doping level of vanadium. Optical studies showed that the absorption edge of SnO2: V NPs showed a redshift with the increasing vanadium concentration. This redshift leads to the decrease in the optical band gap from 3.25 eV to 2.55 eV. A quenching in luminescence intensity has been observed in SnO2: V NPs, as compared to the undoped sample. Rhodamine B dye (RhB) has been used to study the photocatalytic degradation of all synthesized NPs. As compared to undoped SnO2 NPs, the photocatalytic activity of SnO2: V NPs has been improved. RhB dye was considerably degraded by 95% within 150 min over on the SnO2: V NPs.


2018 ◽  
Vol 238 ◽  
pp. 03007
Author(s):  
Xiquan Wang ◽  
Nan Zhang ◽  
Gao Wang

Bi2S3-sensitized BiFO3 (BFO) photocatalyst (Bi2S3/BFO) was successfully synthesized through a facile and environmental ion exchange method between BFO and Thiosurea (H2NCSNH2, TU). The photocatalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS) and UV-vis diffuse reflection spectroscopy (DRS). The obtained Bi2S3/BFO composites showed excellent photocatalytic performance for decomposing Rhodamine B (RhB) compared with pure BFO under visible light irradiation (λ>400nm). 5% Bi2S3/BFO exhibited the highest photocatalytic activity and excessive amount of Bi2S3 would result in the decrease of photocatalytic activity of BFO. The mechanism of enhanced photocatalytic activity was proposed on the basis of the calculated energy band positions.


2019 ◽  
Vol 10 (1) ◽  
pp. 7-11 ◽  
Author(s):  
Zhenzhao Pei ◽  
Pei Wang ◽  
Zhiguo Li

In this work, we report that ZnTiO3/TiO2 composites, which were synthesized by hydrothermal method possessed photocatalytic and potential spraying properties. The obtained ZnTiO3/TiO2 composites were characterized by scanning electron microscopy (SEM) and X-ray diffraction techniques (XRD). Photocatalytic activities of ZnTiO3/TiO2 composites were evaluated by using Rhodamine B (RhB) as a model pollutant under visible light irradiation. The experimental results showed that the as-prepared ZnTiO3 (2%)/TiO2 composite exhibited better photocatalytic activity than that of pure TiO2.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Pham Dinh Du ◽  
Nguyen Trung Hieu ◽  
Tran Vinh Thien

Zeolitic imidazolate framework-8 (ZIF-8) is synthesized quickly at room temperature in methanol with the support of ultrasound. Porous ZnO is also prepared via the thermal treatment of ZIF-8. The photocatalytic activities of the obtained materials are demonstrated via methylene blue (MB) decomposition under UV radiation. The obtained materials are characterized by means of X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), nitrogen adsorption/desorption isotherms, UV-Vis diffuse reflectance spectra (DR-UV-Vis), and photoluminescence spectra. The results indicate that ZIF-8 and the materials obtained from ZIF-8 by heating in the air have photocatalytic activity under UV irradiation. The ZnO sample obtained by ZIF-8 calcination at 660°C for 5 h has the highest photocatalytic activity. However, the MB degradation photocatalytic efficiency of the ZnO samples is even lower than that of the ZIF-8 samples, indicating that ZIF-8 is an effective photocatalyst in the treatment of environmental pollution.


2010 ◽  
Vol 4 (2) ◽  
pp. 69-73 ◽  
Author(s):  
Marija Milanovic ◽  
Ivan Stijepovic ◽  
Ljubica Nikolic

Titanate structures were synthesized in highly alkaline solution using hydrothermal procedure. As-prepared powders were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and transmission electron microscopy (TEM). A specific surface area of the powders was measured by BET method. Results confirmed formation of layered trititanates, already after one hour of hydrothermal synthesis. To examine the photocatalytic activity of the as-prepared layered titanates, methylene blue (MB) was employed as a target compound in response to visible light at ambient temperature. It was observed that the specific surface area, size distribution and crystallinity are important factors to get high photocatalytic activity for the decomposition of MB. .


Sign in / Sign up

Export Citation Format

Share Document