Establishing the Optimal Process Parameters for the Laser Sintering of Ti64 for Layer Thicknesses of 15 μm and 30 μm and Validation of a Melt Pool Simulation Model

2014 ◽  
Vol 1019 ◽  
pp. 254-258 ◽  
Author(s):  
Johan Els ◽  
Michele Truscott ◽  
Kobus van der Walt ◽  
Gerrie Booysen

Direct Metal Laser Sintering (DMLS) is a layer-by-layer Additive Manufacturing (AM) process that creates physical metal parts from three dimensional Computer Aided Design (CAD) data. For DMLS to be generally accepted by industry as a manufacturing technology, high mechanical integrity of final components needs to be demonstrated. Mechanical properties of manufactured components are directly affected by the quality of each individual laser sintered track of each consecutive layer. In this study, the optimal ratio of laser power and scanning speed on single tracks is determined for Titanium-6Al-4V powder on an EOSINT M270 DMLS machine for a layer thickness that varies between 15 μm and 30 μm. Two different laser powers, namely 150 W and 170 W were considered. Scanning speeds varied between 600 mm/s to 2000 mm/s with 200 mm/s intervals. The most stable tracks resulted from high laser power, slow scanning speed and thin powder distribution. The empirical data were compared to a melt pool width prediction program, which was found to underestimate track width at all scanning speeds and re-melting depth at low scanning speeds. Further, it was found that decreased powder thickness can be used with an increased scanning speed and high laser power. This strategy may be used to increase surface quality. The penetration data during fusion of the tracks onto the building platform further validates the quality of each sintered track.

2020 ◽  
pp. 089270572093917
Author(s):  
Aboubaker IB Idriss ◽  
Jian Li ◽  
Yanling Guo ◽  
Yangwei Wang ◽  
Xingdong Li ◽  
...  

This article aims to improve the sintering quality of the sisal fiber/poly-(ether sulfone) (PES) composite (SFPC) part fabricated via selective laser sintering (SLS). The sisal fiber and PES powders were proposed as the feedstock of the SFPC powder bed for SLS. An orthogonal experimental methodology with four levels and five factors was applied to optimize the process parameters for the single-layer sintering experiment. The mechanical properties and accurate dimensions of the sintered part were tested using a universal testing machine and Vernier caliper. The preheating temperature, scanning speed, and laser power were selected as influencing factors on the mechanical properties and accuracy dimensions of the SFPC part. Furthermore, the influence factors on the quality of the sintered part were studied and analyzed. Additionally, the synthesis weighted scoring method was used to determine the optimum parameters of the SLS part. The results showed that the optimal parameters (factors) were preheating temperature of 82°C, scanning speed of 2 m s−1, laser power of 14 W, and laser wavelength of 10.6 μm. Thus, the quality of SFPC part was significantly enhanced when the optimum parameters were applied in SLS process. This article provided the main reference value for the choice of the process parameters of the biomass composite.


Author(s):  
Gregory M Harry ◽  
Peter Fritschel ◽  
William Folkner ◽  
Daniel A Shaddock ◽  
E Sterl Phinney

Materials ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 876 ◽  
Author(s):  
Sapam Ningthemba Singh ◽  
Sohini Chowdhury ◽  
Yadaiah Nirsanametla ◽  
Anil Kumar Deepati ◽  
Chander Prakash ◽  
...  

Investigation of the selective laser melting (SLM) process, using finite element method, to understand the influences of laser power and scanning speed on the heat flow and melt-pool dimensions is a challenging task. Most of the existing studies are focused on the study of thin layer thickness and comparative study of same materials under different manufacturing conditions. The present work is focused on comparative analysis of thermal cycles and complex melt-pool behavior of a high layer thickness multi-layer laser additive manufacturing (LAM) of pure Titanium (Ti) and Inconel 718. A transient 3D finite-element model is developed to perform a quantitative comparative study on two materials to examine the temperature distribution and disparities in melt-pool behaviours under similar processing conditions. It is observed that the layers are properly melted and sintered for the considered process parameters. The temperature and melt-pool increases as laser power move in the same layer and when new layers are added. The same is observed when the laser power increases, and opposite is observed for increasing scanning speed while keeping other parameters constant. It is also found that Inconel 718 alloy has a higher maximum temperature than Ti material for the same process parameter and hence higher melt-pool dimensions.


2010 ◽  
Vol 43 ◽  
pp. 578-582 ◽  
Author(s):  
C.Y. Wang ◽  
Q. Dong ◽  
X.X. Shen

Warpage is a crucial factor to accuracy of sintering part in selective laser sintering (SLS) process. In this paper, The influence of process parameters on warpage when sintering polystyrene(PS) materials in SLS are investigated. The laser power, scanning speed, hatch spacing, layer thickness as well as temperature of powder are considered as the main process parameters. The results showed that warpage increases with the increase of hatch space. Contary to it, warpage decreases with the increase of laser power. Warpage decreases with the increase of layer thickness between 0.16~0.18mm and changes little with increase of the thickness. Warpage increases along with the increase of scanning speed but decreases when the speed is over about 2000mm/s. When the temperature changes between 82°C-86°C, warpage decreases little with the increase of temperature. But further increase of temperature leads to warpage decreasing sharply when the temperature changes between 86°C-90°C.


Nature ◽  
1965 ◽  
Vol 207 (4995) ◽  
pp. 399-400 ◽  
Author(s):  
HUBERTUS STAERK ◽  
GEORG CZERLINSKI

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Hong-Chuong Tran ◽  
Yu-Lung Lo ◽  
Trong-Nhan Le ◽  
Alan Kin-Tak Lau ◽  
Hong-You Lin

Purpose Depending on an experimental approach to find optimal parameters for producing fully dense (relative density > 99%) Inconel 718 (IN718) components in the selective laser melting (SLM) process is expensive and offers no guarantee of success. Accordingly, this study aims to propose a multi-scale simulation framework to guide the choice of processing parameters in a more pragmatic manner. Design/methodology/approach In the proposed approach, a powder layer, ray tracing and heat transfer simulation models are used to calculate the melt pool dimensions and evaporation volume corresponding to a small number of laser power and scanning speed conditions within the input design space. A layer-heating model is then used to determine the inter-layer idle time required to maximize the temperature convergence rate of the solidified layer beneath the power bed. The simulation results are used to train surrogate models to construct SLM process maps for 3,600 pairs of the laser power and scanning speed within the input design space given three different values of the underlying solidified layer temperature (i.e., 353 K, 673 K and 873 K). The ideal selection of laser power and scanning speed of each process map is chosen based on four quality-related criteria listed as follows: without the appearance of key-hole melting; an evaporation volume less than the volume of the d90 powder particles; ensuring the stability of single scan tracks; and avoiding a weak contact between the melt pool and substrate. Finally, the optimal laser power and scanning speed parameters for the SLM process are determined by superimposing the optimal regions of the individual process maps. Findings The feasibility of the proposed approach is demonstrated by fabricating IN718 test specimens using the optimal processing conditions identified by the simulation framework. It is shown that the maximum density of the fabricated parts is 99.94%, while the average density is 99.88% and the standard deviation is less than 0.05%. Originality/value The present study proposed a multi-scale simulation model which can efficiently predict the optimal processing conditions for producing fully dense components in the SLM process. If the geometry of the three-dimensional printed part is changed or the machine and powder material is altered, users can use the proposed method for predicting the processing conditions that can produce the high-density part.


2021 ◽  
Vol 871 ◽  
pp. 277-283
Author(s):  
Chun Yan Yang ◽  
Yun Hao ◽  
Bozhe Wang ◽  
Hai Yuan ◽  
Liu Hui Li

A picosecond laser in spin-cutting mode was used to drill 500μm diameter microholes on 150μm thick aluminium nitride ceramic. The effects of laser processing parameters such as the laser power, scanning speed, and defocus amount on the microhole quality were studied. The results show that as the laser power increases, the inlet and outlet diameters of the holes increase, the taper decreases slightly, and the thickness of the recast layer decreases evidently. The scanning speed has no obvious effect on the diameter and taper of the hole; however, the hole can not be drilled through when the speed is too large. Positive defocus can effectively reduce the taper of the hole. Under 28.5W laser power, 400Hz frequency, 200mm/s scanning speed, and zero defocus amount conditions, high-quality microholes with a taper of 0.85° were obtained.


2011 ◽  
Vol 383-390 ◽  
pp. 6252-6257
Author(s):  
Francesco Cardaropoli ◽  
Fabrizia Caiazzo ◽  
Vincenzo Sergi

Direct Metal Selective Laser Sintering (DMSLS) is a layer-by-layer additive process for metal powders, which allows quick production of complex geometry parts. The aim of this study is to analyse the improvement of DMSLS with “EOSINT M270”, the new laser sintering machine developed by EOS. Tests were made on sintered parts of Direct Metal 20 (DM20), a bronze based powder with a mean grain dimension of 20 μm. Different properties and accuracy were evaluated for samples manufactured with three different exposure strategies. Besides mechanical properties, the manufacturing process was also examined in order to evaluate its characteristics. The quality of laser sintered parts is too affected by operator experience and skill. Furthermore, critical phases are not automatic and this causes an extension of time required for the production. Due to these limitations, DMSLS can be used for Rapid Manufacturing, but it is especially suitable to few sample series.


2020 ◽  
Vol 30 ◽  
pp. 784-788
Author(s):  
E.V. Borisov ◽  
V.A. Popovich ◽  
A.A. Popovich ◽  
V.Sh. Sufiiarov ◽  
Jia-Ning Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document