Study on the Cutting Deforming Force of Single Abrasive Grit for Ultrasonic Vibration Assisted Grinding along Normal Direction

2010 ◽  
Vol 102-104 ◽  
pp. 615-619 ◽  
Author(s):  
Hong Li Zhang ◽  
Jian Hua Zhang

Based on the kinematics analysis and the cutting depth calculation of single abrasive grit, the mathematics models of the cutting deforming force and the average cutting deforming force were made by introducing the unit grinding force, Fu. And the formula of the average cutting force during the grinding zone was calculated. The experiments on the grinding force ratio were conducted under conventional grinding(CG) mode and normal ultrasonic vibration assisted grinding(NUAG) mode. The results showed that the unit grinding force in NUAG was lower than that in CG under the same machining condition; the grinding force ration was decreased due to the normal ultrasonic vibration of the workpiece. And it was helpful to improve the machinablity of the hard-brittle material.

2014 ◽  
Vol 532 ◽  
pp. 568-571
Author(s):  
Hong Li Zhang ◽  
Jin Huan Zhang

The mathematical models of the dynamic grinding force and the average grinding force were established by introducing the unit grinding force Fu. And the formula of the average grinding force in the grinding zone was derived. The experiments were conducted in the traditional grinding (TG) mode and tangential ultrasonic vibration grinding (TUAG) mode. The results show that the unit grinding force in TUAG is lower than that in TG in the same machining condition; the grinding force ratio is decreased due to the tangential ultrasonic vibration of the workpiece. It is helpful to improve the machinablity of the hard-brittle material.


2013 ◽  
Vol 770 ◽  
pp. 207-212
Author(s):  
Yan Wang ◽  
Bin Lin ◽  
Shao Lei Wang ◽  
Xiao Yan Cao

Ultrasonic vibration Assisted Grinding (UAG) is an effective processingmethod for difficultmachiningmetalmaterial.This paper put forward a new model to predict the grinding force in UAG. The paper presents the abrasive grain motion equations, removal rate model,grinding force model and grinding force ratio model.According to the grinding force model, the grinding force will decrease as the spindle speed, vibration amplitude and vibration frequency increase. The grinding force increase as the grinding depth and feed rate increase.


2010 ◽  
Vol 42 ◽  
pp. 204-208 ◽  
Author(s):  
Xiang Dong Li ◽  
Quan Cai Wang

In this paper, the characteristic of grinding force in two-dimensional ultrasonic vibration assisted grinding nano-ceramic was studied by experiment based on indentation fracture mechanics, and mathematical model of grinding force was established. The study shows that grinding force mainly result from the impact of the grains on the workpiece in ultrasonic grinding, and the pulse power is much larger than normal grinding force. The ultrasonic vibration frequency is so high and the contact time of grains with the workpiece is so short that the pulse force will be balanced by reaction force from workpiece. In grinding workpiece was loaded by the periodical stress field, which accelerates the fatigue fracture.


Author(s):  
Yutong Qiu ◽  
Jingfei Yin ◽  
Yang Cao ◽  
Wenfeng Ding

Tangential ultrasonic vibration-assisted grinding (TUAG) has a wide prospect in machining difficult-to-machine materials. However, the surface generation mechanism in TUAG is not fully recovered. This study proposes an analytical model of the surface topography produced by TUAG. Based on the model, the surface topography and roughness are predicted and experimentally verified. In addition, the influence of the grinding parameters on the surface topography is analyzed. The predicted surface topography well coincides with experimental measurements, and the prediction error in surface roughness Ra by the proposed model is less than 5%. Compared with conventional grinding, TUAG produces a surface with more uniform scratches and surface roughness Ra was reduced by up to 27% with the proper parameters. However, the improvement of surface roughness in TUAG is weakened when grinding speed or depth of cut increases. Moreover, the influence of the ultrasonic vibration amplitude on the surface roughness is not monotonous. With the grinding parameters selected in this study, TUAG with an ultrasonic amplitude of 7.5 μm produces the minimum surface roughness.


2009 ◽  
Vol 626-627 ◽  
pp. 35-40 ◽  
Author(s):  
Z. Liang ◽  
Yong Bo Wu ◽  
Xin Bing Wang ◽  
Y. Peng ◽  
Wei Xing Xu ◽  
...  

This paper discusses the feasibility of improving machining efficiency of sapphire substrate by using two-dimensional (2D) ultrasonic vibration assisted grinding. An elliptic ultrasonic vibrator is designed and produced by bonding a piezoelectric ceramic device (PZT) on a metal elastic body (stainless steel, SUS304). The sapphire substrate is fixed onto the top face of the vibrator and ultrasonically vibrates in 2D vibration mode when the PZT is excited by two alternating current voltages with a phase difference. A grinding apparatus mainly composed of the ultrasonic vibrator is constructed, and experiments are performed with lateral modulation of elliptic ultrasonic vibration vertical to the grinding direction. Both the grinding forces and the ground work surface are measured and examined. Experimental results show that the grinding force decreases significantly and the resulted surface is improved in certain degree with the ultrasonic vibration compared to those of conventional grinding without ultrasonication. This indicates that the high efficiency grinding for sapphire substrate can be performed with the two-dimensional vibration grinding technique presented in this paper.


Author(s):  
Na Qin ◽  
Z. J. Pei ◽  
W. L. Cong ◽  
C. Treadwell ◽  
D. M. Guo

A mechanistic model for cutting force in ultrasonic-vibration-assisted grinding (UVAG) (also called rotary ultrasonic machining) of brittle materials is proposed for the first time. Fundamental assumptions include: (1) brittle fracture is the dominant mechanism of material removal, and (2) the removed volume by each diamond grain in one vibration cycle can be related to its indentation volume in the workpiece through a mechanistic parameter. Experiments with UVAG of silicon are conducted to determine the mechanistic parameter for silicon. With the developed model, influences of six input variables on cutting force are predicted. These predicted influences trends are also compared with those determined experimentally for several brittle materials.


2013 ◽  
Vol 797 ◽  
pp. 234-239 ◽  
Author(s):  
Li Fei Liu ◽  
Fei Hu Zhang ◽  
Chun Hui Li ◽  
Jiang Chen ◽  
Min Hui Liu

In this paper, experiments are conducted to study the characters of Ultrasonic Assisted Grinding (UAG) and Conventional Grinding (CG), diamond grinding wheel is used in experiments, grinding forces and surface roughness are measured in both UAG and CG. The effects of different parameters on grinding force, surface roughness and force ratio are discussed. The results show that the grinding force and surface roughness in UAG is smaller than those in CG. The force ratio in UAG is lower than that in CG, which reveals that the grinding wheel has a good wear-resistant property in UAG process.


2010 ◽  
Vol 97-101 ◽  
pp. 1910-1914 ◽  
Author(s):  
Xue Hui Shen ◽  
Jian Hua Zhang ◽  
Tian Jin Yin ◽  
Chun Jie Dong

The applications of micro end milling have been gradually broadened to meet the ever-increasing demands for micro parts. In micro milling, premature tool failure and short service life are major problems. In this study, micro end milling with ultrasonic vibration in normal direction is investigated. Kinematical analysis is done to describe the exact trajectory of the tool tip when vibration is applied. Based on which, an analytical model of chip formation is proposed. By accurate calculation of instantaneous chip thickness, the cutting forces in micro end milling with and without ultrasonic vibration are predicted and verified by a slot-milling experiment. As a result, it is found that ultrasonic vibration in normal direction is helpful when reducing the cutting force owing to intermittent cutting effect.


Sign in / Sign up

Export Citation Format

Share Document