Characterization of Ceramic Tiles Added with EAF Slag Waste

2014 ◽  
Vol 1024 ◽  
pp. 211-214 ◽  
Author(s):  
Pao Ter Teo ◽  
Abu Seman Anasyida ◽  
Mohd Sharif Nurulakmal

The increasing production of steel leads to an increment of solid wastes generated especially Electric Arc Furnace (EAF) slag. This becomes a serious concern as the slag has to be disposed in a proper manner in order to avoid dumping in landfills which will eventually occupy available land and may cause permanent damage to the flora and fauna. In this project, an attempt was made to utilize the EAF slag as one of the raw materials in ceramic tiles. Results obtained showed that as percentage of EAF slag added was increased up to 60%, percentage of apparent porosity and water absorption were found to increase, accompanied by reduction in flexural strength due to more severe porosity was observed in the tiles. On the other hand, reducing the percentage of EAF slag up to 40% while increasing percentage of ball clay added led to formation of higher total percentage of anortite and wollastonite minerals. This would contribute to higher flexural strength of tiles. In addition, by adding silica and feldspar, the flexural strength of tile produced was further improved due to optimization of densification process. Highest flexural strength of EAF slag based tiles was attained at composition of 40% EAF slag 30% ball clay 10% feldspar 20% silica. It was observed that properties of ceramic tiles added with EAF slag, especially flexural strength are comparable with commercial ceramic tiles. Therefore, the EAF slag ceramic tiles have great potential to be made into high flexural strength or wear resistant floor tiles.

2014 ◽  
Vol 1024 ◽  
pp. 235-238 ◽  
Author(s):  
Mohamad Hasmaliza ◽  
Anasyida Abu Seman ◽  
Wei Long Gan

Electric arc furnace slag (EAFS) is a solid waste from steel making industrial. Previously, EAFS was deposited, recycled or used as fertilizer. In present study, EAFS is used as one of the raw materials in ceramic tile production. EAFS added tiles samples have been prepared by mixing of EAFS with ball clay, quartz and feldspar. The feldspar content was varied at various weight percentages (0, 10 and 20 %) to observe their effect on the produced samples. The raw materials mixture was pressed and then sintered at temperature range 1100°C-1175°C for 1 hour. In general, results shows that, sample with higher content of feldspar require shorter vitrification range and having relatively higher density and good strength properties. In addition, MOR value was increasing as the sintering temperature was increasing. However when the temperature reached 1175°C, the MOR was dropped which may be due to the early vitrification of the compositions, resulting in over firing, grain growth and recrystallization. Whereas the density values are relatively higher than the conventional vitreous ceramic tiles due to the presence of high amount of iron oxide from the EAFS.


2019 ◽  
Vol 323 (2) ◽  
pp. 861-874
Author(s):  
Predrag Kuzmanović ◽  
Nataša Todorović ◽  
Jovana Nikolov ◽  
Jovana Knežević ◽  
Bojan Miljević

2021 ◽  
Vol 7 (10) ◽  
pp. 1716-1730
Author(s):  
Huu-Bang Tran

The feasibility of using EAF slag aggregate, fly ash, and silica fume in pavement Electric Arc Furnace Slag Concrete (CEAFS) is the focus of this research. EAF slag aggregate is volume stable and suitable for use in concrete, according to the findings of the testing. EAF slag was utilized to replace natural coarse aggregates in the CEAFS mixes. CEAFS was created by blending 50% crushed stone with 50% EAF slag in coarse aggregates, with fly ash (FA) and silica fume (SF) partially replacing cement at content levels (i.e. FA: 0, 20, 30, and 40%; SF: 0, 5, and 10%). The soil compaction approach was used to evaluate the optimal moisture level for CEAFS mixes containing EAF slag aggregate fly ash and silica fume. A testing program was used to investigate the weight of CEAFS units and their mechanical qualities (compressive strength, flexural strength, and elastic modulus). As a result, the fresh and hardened unit weights in the CEAFS are comparable. Moreover, variations in the concentration of mineral additives FA and SF in adhesives, as well as the CEAFS mixed aggregate ratio, have an impact on compressive strength, flexural strength, and elastic modulus at all ages. However, combining EAF slag aggregate with (FA0% +SF10%; FA10% +SF0%; FA10% +SF10%; and FA20% +SF10%) the CEAFS mixtures have improved mechanical characteristics over time. According to this study, CEAFS pavements can be made with EAF slag aggregate fly ash and silica fume. In addition, a formula correlation was suggested to compute CEAFS (i.e. compressive strength with elastic modulus and compressive strength with flexural strength). Doi: 10.28991/cej-2021-03091755 Full Text: PDF


2013 ◽  
Vol 66 (1) ◽  
pp. 91-98 ◽  
Author(s):  
José Manuel Rivas Mercury ◽  
Domingos de Jesus Costa Pereira ◽  
Nazaré do Socorro Lemos Silva Vasconcelos ◽  
Aluísio Alves Cabral Jr. ◽  
Romulo Simões Angélica

This work involved the first-ever characterization of antique Portuguese ceramic wall tiles in the Historic Center of São Luis do Maranhão, Brazil. The tiles were characterized by optical microscopy, X-ray diffraction (XRD) and chemical analysis to identify the possible raw materials used in the fabrication process, as well as the firing temperature of these materials. The results indicate that the microstructure of these materials consists of pores of varying sizes with calcite incrustations and quartz grain sizes smaller than 500 µm distributed in a pinkish yellow matrix, which were identified by XRD as calcite, gehlenite, wollastonite, quartz, and amorphous mineral phases. Based on this information, it can be inferred that the original raw materials probably consisted of a mixture of kaolinitic clays (Al2O3·2SiO2·2H2O) rich in calcium carbonates and quartz, or mixtures of kaolinitic clays, quartz and calcite, which did not reach the pre-firing temperature of 950ºC.


2014 ◽  
Vol 34 (12) ◽  
pp. 2697-2708 ◽  
Author(s):  
Pao-Ter Teo ◽  
Abu Seman Anasyida ◽  
Projjal Basu ◽  
Mohd Sharif Nurulakmal

2010 ◽  
Vol 13 (1-2) ◽  
pp. 77
Author(s):  
H.C. Mandavia ◽  
K.V.R. Murthy ◽  
R.U. Purohit ◽  
P.K. Patel ◽  
B.M. Sharma

Many flooring materials most of them are in natural form are used to manufacture floor tiles for household flooring purpose. The peoples demand for variety of flooring material Leeds to develop various types of ceramic tiles. In India ceramic industry is fast growing one, more then 400 units of manufacturing ceramic tiles, vitrified tiles and sanitary ware, situated around Morbi, Rajkot, Gujarat, India. Many natural minerals are used as the raw materials required for the manufacturing ceramic ware. The following minerals are used to manufacturing the ceramic tiles i.e. Quartz, Feldspar, Zircon, Talc, Grog, Alumina oxide, etc. Most of the minerals are from Indian mines of Gujarat and Rajasthan states, some of are imported from Russian sub continent. The present paper reports the thermoluminescence (TL) characteristics of Feldspar, Alumina and Quartz minerals collected from the ceramic tiles manufacturing unit, Morbi. The as received minerals Natural TL was recorded (NTL), and annealed and quenched from 400 °C and 800 °C followed by 15Gy beta dose given from Sr-90 beta source TL was recorded and the comparative TL (Thermoluminescence) study of above materials are presented. The characterization of the minerals is done using TGA and XRD studies.


2016 ◽  
Vol 869 ◽  
pp. 191-194
Author(s):  
Carolina del Roveri ◽  
R.A. Cunha ◽  
Antenor Zanardo ◽  
Letícia Hirata Godoy ◽  
Maria Margarita Torres Moreno ◽  
...  

The Santa Gertrudes ́ Ceramic Polo is the Brazilian region with national and international prominence in the manufacturing of ceramic tiles. Some raw materials used by ceramic industry and coatings industries in this region were characterized in terms of chemical-mineralogical and microscopic view, in order to promote the best technological characterization of them. For this, chemical analysis of major elements and trace X-ray diffraction and microscopic analysis by SEM, TEM and Electron microprobe were performed by ICP-MS. The results showed that the raw materials commonly referred to as "clays" are actually constituted by various mineral phases, which directly influence the properties of the same ceramics. Also showed that, by virtue of this constitution, different formulations can be developed, using the best raw materials found in the region of Santa Gertrudes, SP.


Cerâmica ◽  
2013 ◽  
Vol 59 (352) ◽  
pp. 609-613
Author(s):  
C. Sadik ◽  
A. Al Albizane ◽  
I. El Amrani

Production of porous and light-weight bricks with acceptable flexural strength is accomplished. Sawdust was used as an additive to an earthenware brick to produce the pores. SEM-EDS, XRD and XRF analysis of the raw materials and the elaborated refractory were performed. Mixtures containing sawdust were prepared at different proportions (up to 30%). Apparent porosity at 1600 °C was investigated with the bulk density, water absorption, firing shrinkage and flexural strength. Microstructural investigation was carried out by both natural light microscopy and polarized light microscopy. The results obtained showed that the samples tested here maintained their shape without undergoing any deformation up to 1600 °C. The use of sawdust decreased the fired density of the bricks down to 1.24 g/cm³.


2017 ◽  
Author(s):  
NUR ALIA BINTI ROSLIN AZMY

Porous clay-precipitated calcium carbonates were prepared via polymeric sponge replication method using precipitated calcium carbonates (PCC) and red clay as raw materials. Different compositions of precipitated calcium carbonates (PCC) which is 10 wt.% and 15 wt.% with 24 hours and 48 hours milling time were sintered at 1250°C for 2 hours respectively which influenced the flexural strength and morphology of the porous ceramic. The highest flexural strength (1.843 MPa) were obtained by 10 wt.% [CaCO3]PCC milled at 24 hours related to the lowest percentage of porosity (81.00%). Mineralogical characterization of porous ceramic were determined via X-ray diffraction (XRD) shows the presence of crystalline phases such as anorthite (2CaAl2Si2O8), gehlenite (Ca2Al2SiO7) and esseneite (CaFeAlSiO6) after sintering process. The morphological analysis via stereomicroscope shows that the porosity and struts were found due to presence of precipitated calcium carbonates that act as pore forming agent. The colour of porous ceramic between 10 wt.% [CaCO3]PCC and 15 wt.% [CaCO3]PCC shows significant difference due to iron oxide contained in the red clay which contributes to the colour of the samples. Crack propagates in the intergranular type of fracture mode due to resulted porous ceramic is a brittle material.


2021 ◽  
Vol 4 (1) ◽  
pp. 13-21
Author(s):  
Oluranti Abiola ◽  
Adekola Oke ◽  
Babatunde Omidiji ◽  
Dare Adetan

The work evaluates the effect of firing temperature on the mechanical properties of ceramic tiles. This was with the view to determine the optimum processing condition for Osun State ceramic tiles. Ceramic raw materials collected from Osun State were batched using clay-feldspar-silica sand blending ratio of 5:4:1, 5:3:2, 5:2:3, 5:1:4, 6:3:1, 6:2:2, 6:1:3, 7:2:1, 7:1:2 and 8:1:1 by weight; and homogeneously mixed. Three replica samples were moulded by the method of dry forming, fired at 1200, 1300 and 1400 oC and subjected to breaking and flexural strength tests using the Universal Testing Machine while the hardness test was carried out on a Moh’s scale. The results showed that breaking strength, flexural strength and Moh’s hardness fell within the range 199.43 to 325 N, 11.97 to 19.50 N/mm2 and 2.5 to 4 MH respectively, while Figures revealed that samples with 60% clay, 10% feldspar and 30% silica sand fired at 1320 oC will process the best mechanical properties. In conclusion, ceramic raw materials collected from Osun State are viable for ceramic tile production.


Sign in / Sign up

Export Citation Format

Share Document