Determination of Some Mechanical Properties of Welded Reinforcing Steel with Self-Shielded Wires by Vibration Tests

2014 ◽  
Vol 1029 ◽  
pp. 206-211 ◽  
Author(s):  
Liviu Bereteu ◽  
Mircea Burcă ◽  
Raul Moisa ◽  
Dorin Simoiu ◽  
Gheorghe Drăgănescu ◽  
...  

Reinforced concrete is a material formed by pouring concrete over reinforcement steel bars and wires and sometimes by a polymer that turns by drying in a hard and rigid composite. Welding of steel reinforcement concrete is a relatively difficult operation and with a large amount of work, given by the large number of welds that are needed and when this work is make in site conditions. The most common method of steel reinforcement welding is manual welding with coated electrode. The major disadvantage of this process is low productivity in welding effects on execution time, and the cost of welding. An alternative to manual welding with coated electrode for steel reinforcement welding on site is the welding process with self-shielded tubular wires.The aim of this paper is to determine the mechanical properties of welded reinforcing steel PC 52 with self-shielded wires, using a vibroacustic technique. To validate this method, the results obtained by vibroacoustic signal processing are compared with those determined by the tensile stresses of the same samples.

2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Hui Chen ◽  
Jinjin Zhang ◽  
Jin Yang ◽  
Feilong Ye

The tensile behaviors of corroded steel bars are important in the capacity evaluation of corroded reinforced concrete structures. The present paper studies the mechanical behavior of the corroded high strength reinforcing steel bars under static and dynamic loading. High strength reinforcing steel bars were corroded by using accelerated corrosion methods and the tensile tests were carried out under different strain rates. The results showed that the mechanical properties of corroded high strength steel bars were strain rate dependent, and the strain rate effect decreased with the increase of corrosion degree. The decreased nominal yield and ultimate strengths were mainly caused by the reduction of cross-sectional areas, and the decreased ultimate deformation and the shortened yield plateau resulted from the intensified stress concentration at the nonuniform reduction. Based on the test results, reduction factors were proposed to relate the tensile behaviors with the corrosion degree and strain rate for corroded bars. A modified Johnson-Cook strength model of corroded high strength steel bars under dynamic loading was proposed by taking into account the influence of corrosion degree. Comparison between the model and test results showed that proposed model properly describes the dynamic response of the corroded high strength rebars.


2020 ◽  
Vol 1012 ◽  
pp. 349-353
Author(s):  
D.B. Colaço ◽  
M.A. Ribeiro ◽  
T.M. Maciel ◽  
R.H.F. de Melo

The demand for lighter materials with suitable mechanical properties and a high resistance to corrosion has been increasing in the industries. Therefore, aluminum appears as an alternative due to its set of properties. The aim of this work was to evaluate residual stress levels and mechanical properties of welded joints of Aluminum-Magnesium alloy AA 5083-O using the Friction Stir Welding process. For mechanical characterization were performed a uniaxial tensile test, Vickers hardness, bending test and, finally, the determination of residual stresses. It was concluded that welding by FSW process with an angle of inclination of the tool at 3o, established better results due to better mixing of materials. The best results of tensile strength and a lower level of residual stresses were obtained using a tool rotation speed of 340 RPM with welding advance speed of 180 mm/min and 70 mm/min.


2011 ◽  
Vol 4 (1) ◽  
pp. 51 ◽  
Author(s):  
M. A. Islam

During earthquake, the ground along with its various natural and manmade structures experiences shaking of various intensities and frequencies depending on the nature of the earthquake. The loading activities caused by earthquakes on various structures are very much cyclic type, which is popularly known as fatigue loading. On the other hand, for modern high-rise buildings a large volume of steel bar is used to reinforce the concrete because of the pioneer role of steel bars embedded inside the concrete for safety of the buildings. In this study various mechanical properties of reinforcing steel bars that are essential to counter balance the earthquake effects have been identified first. At the same time these essential mechanical properties have been defined and studied for most commonly used reinforcing steel bars. For doing this, both the conventional and advanced structural steels were selected. The mechanical properties and fatigue behaviours of these steels have been presented and discussed in this paper.  Keywords: Earthquake; High-rise buildings; Reinforcing steel bars; Conventional structural steel; Advanced structural steel.© 2012 JSR Publications. ISSN: 2070-0237 (Print); 2070-0245 (Online). All rights reserved.doi: http://dx.doi.org/10.3329/jsr.v4i1.7069 J. Sci. Res. 4 (1), 51-63 (2012)


2019 ◽  
Vol 2019 ◽  
pp. 1-12
Author(s):  
Jinsong Tu ◽  
Ming Zhou ◽  
Yuanzhen Liu ◽  
Y. Frank Chen

An experimental study on the bond behavior of reinforcing steel bars in thermal insulation concrete (TIC) mixed with glazed hollow beads (GHBs) and exposed to freeze-thaw (F-T) cycles was carried out. In order to investigate the effects of GHBs on freezing and thawing, the experimental results were compared with those of normal concrete (NC). The comparison shows that, after 300 F-T cycles, both bond behavior and mechanical properties of the TIC specimens are better than those of the NC specimens. Furthermore, in order to investigate the mechanism of frost effect on TIC, the CT scanning method was used to investigate the evolution of the inner structure of a TIC specimen exposed to F-T cycles. The CT images show that the deterioration of bond performance and mechanical properties of the TIC specimen appears to be caused by the increase of micropores in the TIC.


2019 ◽  
Vol 19 (4) ◽  
pp. 1067-1076
Author(s):  
Jamiu Kolawole Odusote ◽  
Wasiu Shittu ◽  
Adekunle Akanni Adeleke ◽  
Peter Pelumi Ikubanni ◽  
Olumide Adeyemo

2013 ◽  
Vol 430 ◽  
pp. 101-107
Author(s):  
Raul Moisa ◽  
Tiberiu Medgyesi ◽  
Liviu Bereteu ◽  
Gheorghe Drăgănescu ◽  
Dorin Simoiu ◽  
...  

The purpose of this paper is to determine Young's modulus and the shear modulus of some welded joints made with usual tubular steel by flexural vibration tests. This is the case of the type carbon steel plates S235 JR according to EN 10025, with a thickness of 3 mm welded with MIG/MAG welding process with R713 tubular wire with a diameter of 1.2 mm, using SelcoNeoMig 3500 equipment. The technological part is detailed: welding parameters used, advantages and disadvantages of tubular wires use, problems regarding ambient protection, punctual applications of welding procedures with tubular wire. Processing the obtained signal based on vibration response the elasticity modulus is determined and its value is then compared with the value of elasticity modulus obtained through tensile stress and also with the value obtained by theoretical way.


Sign in / Sign up

Export Citation Format

Share Document