Bioactive Calcium Silicate Coating of Titania Nanotubes for Controlled Drug Release

2014 ◽  
Vol 1033-1034 ◽  
pp. 1005-1008
Author(s):  
Ping Li ◽  
Zhang Wang ◽  
Fei Luo ◽  
Xiu Feng Xiao

A novel and facile process called “alternative loop immersion method” formed bioactive and biocompatible Zn-doped calcium silicate coating over the drug-loaded titania nanotube arrays to improve the properties of drug release. The samples were characterized by scanning electronic microscope (SEM), x-ray diffraction (XRD) and fourier transform infrared (FT-IR). The results show that TNTs modified by Zn-doped calcium silicate coating possess improved drug release characteristics with reduced burst release (from 83% to 66%) and prolonged drug release (from 11 days to over 15 days). This approach provides an alternative to tailor the surface of TNTs and offer considerable propects for diverse biomedical applications.

Author(s):  
ZEESHAN SHAIKH

Objective: Irbesartan is an antihypertensive with limited bioavailability. The objective of the study was to develop controlled release matrix tablets of irbisartan drug. Methods: Tablets were prepared by wet granulation process. Result: In vitro drug release study revealed that HPMC causes initial burst release of drug hence combining HPMC sustained the action for 8 h (95.92±0.57% release). Fitting the in vitro drug release data to Korsmeyer equation indicated that diffusion along with erosion could be the mechanism for drug release. Compared to conventional tablets, the release of model drug from these HPMC matrix tablets was prolonged, leading to achieve an effective therapy with a low dosage of the drug, to reduce the frequency of medication. The pharmacological and clinical properties of irbesartan, a noncompetitive angiotensin II receptor type 1 antagonist, successfully used for more than a decade in the treatment of essential hypertension. Results: Compatibility Studies In order to investigate the possible interactions between irbesartan and distinct polymers and/or diluents, FT-IR and DSC studies were carried out. FT-IR results proved that the drug was found to be compatible with excipients as wave numbers are almost similar for pure drug and also drug excipients mixture. In picture 1 and 2. DSC studies indicate that chosen excipients for the formulation were found to be compatible with the active ingredient as the melting endothermic peaks are in the range of 250-320 °C which is same as the melting point of irbisartan. Conclusion: Irbesartan exerts its antihypertensive effect through an inhibitory effect on the pressure response to angiotensin II. Irbesartan 150–300 mg once daily confers a lasting effect over 24 h, and its antihypertensive efficacy is further enhanced by the coadministration of hydrochlorothiazide.


2018 ◽  
Vol 16 (1) ◽  
pp. 66-78 ◽  
Author(s):  
Ruby Christian ◽  
Vaishali Thakkar ◽  
Tushar Patel ◽  
Mukesh Gohel ◽  
Lalji Baldaniya ◽  
...  

Objective: The focus of this study was to develop in situ injectable implants of Lornoxicam which could provide sustained drug release. Methods: Biodegradable in situ injectable implants were prepared by polymer precipitation method using polylactide-co-glycolide (PLGA). An optimized formulation was obtained on the basis of drug entrapment efficiency, gelling behavior and in vitro drug release. The compatibility of the formulation ingredients were tested by Fourier transform infrared (FT-IR) spectroscopy, and differential scanning colorimetry (DSC). SEM study was performed to characterize in vivo behavior of in situ implant. Pharmacokinetic study and in vivo gelling study of the optimized formulation were performed on Sprague-Dawley rats. Stability testing of optimized formulation was also performed. Results: The drug entrapment efficiency increased and burst release decreased with an increase in the polymer concentration. Sustained drug release was obtained up to five days. SEM photomicrographs indicated uniform gel formation. Chemical interaction between the components of the formulation was not observed by FT-IR and DSC study. Pharmacokinetic studies of the optimized formulation revealed that the maximum plasma concentration (Cmax), time to achieve Cmax (Tmax) and area under plasma concentration curve (AUC) were significantly higher than the marketed intramuscular injection of lornoxicam. Stability study of optimized batch showed no change in physical and chemical characteristics. Conclusion: Lornoxicam can be successfully formulated as in situ injectable implant that provides long-term management of inflammatory disorders with improved patient compliance.


Author(s):  
P M Jamkar ◽  
K N Gujar ◽  
S B Nemmaniwar ◽  
N B Kulkarni

Controlled drug release system is one of the most favourable technique of novel drug delivery system owing to its reproducibility and ease of formulation. Nanotechnology is very useful for controlling the drug release and thus improving the pharmacokinetic and pharmacodynamic properties of the drug. The technique improves patient compliance by reducing both dose and the frequency of administration and thus minimizing the local as well as systemic toxic effects. The aim of the present research work was to formulate and evaluate gastroretentive nanoparticles of Repaglinide, an anti-diabetic drug by using the ionotropic gelation method. Repaglinide has a very short half-life of 1 hour with bioavailability 56%. Sustained release mucoadhesive nanoparticles of Repaglinide were prepared to increase the drug residence time in gastrointestinal tract and thus improving the bioavailability of drug. The mucoadhesive nanoparticles were prepared by using chitosan and sodium alginate as polymers; calcium chloride as the crosslinking agent. Different formulations were prepared with varying concentrations of chitosan and sodium alginate in order to achieve the optimum particle size and maximum encapsulation efficiency. The particle size of nanoparticles was found to be in the range of 300 nm to 756 nm. Drug encapsulation efficiency ranged between 56% to 80% with controlled drug release upto 88% in phosphate buffer pH 7.4 and 75% drug release in 0.1N HCl in 12 hrs. FT-IR and DSC studies showed that the drug and polymers were compatible. The results of swelling study and bioadhesive strength indicated that optimized formulation exhibited excellent mucoadhesive properties


2009 ◽  
Vol 2 ◽  
pp. BTRI.S3728 ◽  
Author(s):  
Aida Elkayar ◽  
Yehia Elshazly ◽  
Mariana Assaad

The objective of this work was to study the production of hydroxyapatite (HA) from bovine teeth. Hydroxyapatite (HA) was produced from bovine teeth powder after calcination at 1150 °C. It was discovered that the sample preparation process influences its properties, so, crystal structure and thermal stability of HA were investigated. The X-Ray diffraction analysis (XRD) results confirmed that HA has been successfully produced. Fourier transform infrared spectroscopic (FT-IR) study confirmed the presence of hydroxyl (OH) and phosphate (PO4−3) functional groups. The scanning electronic microscope (SEM) was employed to identify the surface morphology of HA, and showed the nanoporous structure throughout the matrix. The sample constituents such as Ca, P, K … etc., and their values were determined by Energy dispersive X-Ray (EDX).


2010 ◽  
Vol 150-151 ◽  
pp. 1220-1224
Author(s):  
Xiao Man Du ◽  
Qin Fu Liu ◽  
Hong Fei Cheng

The kaolinite-potassium acetate composite was prepared by the immersion method. The intercalation composites were characterized by means of Scanning Electron Microscope (SEM), X-ray diffraction (XRD), Fourier transformation infrared (FT-IR) and High-resolution thermogravimetric analysis (HRTG). The results of XRD show that the intercalation of kaolinite by potassium acetate causes an increase of the basal spacing from 0.718 to 1.42nm. Thermal analysis shows the dehydroxylation of kaolinite decreased from 464 °C to 459.5 °C after intercalation of potassium acetate and three endotherms at 280, 323 and 459.5 °C attributed to the loss of water in the composite, potassium acetate and hydroxyl in the composite.


2010 ◽  
Vol 13 (2) ◽  
pp. 152 ◽  
Author(s):  
Ghobad Mohammadi ◽  
Mohammad Barzegar-Jalali ◽  
Hadi Valizadeh ◽  
Hossein Nazemiyeh ◽  
Azim Barzegar-Jalali ◽  
...  

ABSTRACT- Purpose. A physically sound derivation for reciprocal power time (RPT) model for kinetic of drug release is given. In order to enhance ibuprofen dissolution, its solid dispersions (SDs) prepared by cogrinding technique using crospovidone (CP), microcrystalline cellulose (MC) and oleaster powder (OP) as a novel carrier and the model applied to the drug release data. Methods. The drug cogrounds with the carriers were prepared and subjected to the dissolution studies. For elucidation of observed in vitro differences, FT-IR spectroscopy, X-ray diffraction patterns, DSC thermograms and laser particle size measurement were conducted. Results. All drug release data fitted very well to newly derived RPT model. The efficiency of the carriers for dissolution enhancement was in the order of: CP>OP>MC. The corresponding release kinetic parameter derived from the model, t50% (time required for 50% dissolution) for the carrier to drug ratio 2:1 were 2.7, 10.2 and 12.6 min, respectively. The efficiency of novel carrier, OP, was between CP and MC. FT-IR showed no interaction between the carriers and drug. The DSC thermograms and X-ray diffraction patterns revealed a slight reduced crystallinty in the SDs. Also grinding reduced mean particle size of drug from 150.7 to 44.4 µm. Conclusion. An improved derivation for RPT model was provided which the parameter of the model, t50%, unlike to previous derivations was related to the most important property of the drug i.e. its solubility. The model described very well drug release kinetics from the solid dispersions. Cogrinding was an effective technique in enhancing dissolution rate of ibuprofen. Elaeagnus angostifolia fruit powder was suggested as a novel potential hydrophilic carrier in preparing solid dispersion of ibuprofen.


Nanomaterials ◽  
2019 ◽  
Vol 9 (2) ◽  
pp. 253 ◽  
Author(s):  
Qinghua Xu ◽  
Yunzhong Ji ◽  
Qiucun Sun ◽  
Yingjuan Fu ◽  
Yongjian Xu ◽  
...  

In this work, a novel nanocomposite hydrogel based on cellulose nanocrystal (CNC) and chitosan (CS) was fabricated and applied as a carrier for the controlled delivery of theophylline. CNC was firstly periodate-oxidized to obtain dialdehyde nanocellulose (DACNC). Then, chitosan was crosslinked using DACNC as both the matrix and crosslinker in different weight ratios, to fabricate CNC/CS composites. The prepared composites were characterized using Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction pattern (XRD), scanning electron microscopy (SEM), zeta potential measurement and swelling ratio tests. FT-IR results confirmed the successful reaction between the free amino groups on chitosan and the aldehyde groups on DACNC. With the increase of chitosan percentage in the hydrogel, the isoelectric point was shifted towards an alkaline pH, which was probably caused by the higher content of free amino groups. The swelling ratio of the composite also increased, which may have been due to the decrease of crosslinking density. Because the swelling ratio of the drug-loaded hydrogels differed under varied pH values, the cumulative drug release percentage of the composite hydrogel was achieved to approximately 85% and 23% in the gastric (pH 1.5) and intestinal (pH 7.4) fluids, respectively. Therefore, CNC/CS hydrogel has application potential as a theophylline carrier.


MRS Advances ◽  
2020 ◽  
Vol 5 (46-47) ◽  
pp. 2409-2417
Author(s):  
Ryan Go ◽  
Shadi Houshyar ◽  
Kate Fox ◽  
Yen Bach Truong

AbstractA drug delivery system with sustainable controlled drug release can improve the quality of life of a patient by reducing the side-effects and better absorption of the drug locally. However, the main disadvantageous of this delivery model is the burst release of the drug, which can result in severe health problem, such as toxicity. Here in this study, a new coaxial microfiber has been developed with encapsulated anti-inflammatory drug, ibuprofen, inside the core structure of the coaxial fibre. The core consisting of polyethylene oxide (PEO) carrying the drug was covered with the polylactic acid (PLA)/PEO and shell to prevent the burst release of the drug and provide sustainable release over a prolonged time. The release profiles showed that the burst release was reduced from 20% in control scaffold, core only, to 5% in core-shell structure after 6 hrs. The higher percentage of PLA in the shell composition provides a slower release of ibuprofen, due to the slower degradation of PLA in comparison with PEO. The result indicates the developed structure can be a potential system for the localized release of the various drug system, which leads to a more sustainable and controlled release of the drug over the more extended period and deliver a better outcome along with side-effect prevention.


2019 ◽  
Vol 31 (3) ◽  
pp. 569-574 ◽  
Author(s):  
Fatimah Abdul Razzak Mageed ◽  
Mohanad Musa Kareem ◽  
Mohammad N. Al-Baiati

In this work, two new drug substituted monomers and new homogenous and heterogeneous polymers were synthesized loaded with medicinal properties to extend the controlled drug. The first step includes preparation of compound (F1) via reaction of maleic anhydride with 4-aminobenzoic acid. Then compound (F1) was converted to its corresponding acyl chloride derivative which reacted with amino drugs (sulfadiazine, chlordiazepoxide) afforded (F2 and F3) monomers. Homogeneous polymers (F8 and F9) prepared through polymerization reaction of free radicals of the monomers (F2 and F3) under nitrogen using methyl ethyl ketone peroxide (MEKP) as initiator. Heterogeneous polymers (F14 and F15) prepared through polymerization reaction of free radicals of the monomers (F2 and F3) separately with acrylic acid under nitrogen using methyl ethyl ketone peroxide (MEKP) as initiator. All these prepared monomers and polymers were characterized by FT-IR and 1H NMR, 13C NMR spectroscopies. Controlled drug release and swelling % was studied in different pH values at 37 ºC. Intrinsic viscosities were measured at 25 ºC with Ostwald viscometer and applied the characteristic of solubility for these polymers.


Sign in / Sign up

Export Citation Format

Share Document