Structure Formation of Sulfur-Based Composite: The Model

2014 ◽  
Vol 1040 ◽  
pp. 592-595 ◽  
Author(s):  
Denis G. Kiselev ◽  
Evgeniy Valerjevich Korolev ◽  
Vladimir Smirnov

In material science the simultaneous application of theoretical examination, experimental and numerical studies are often required. This is especially true for modern composite materials with extra inter-boundary nanoscale layers. Thickness of layers is usually about tens of nanometers, while diameters of particles of filler are about several hundreds of nanometers. Thus, during the theoretical study and numerical experiments the size and properties of inter-boundary layer must be taken into account. The proper choice of the model is the key factor for the adequate results of simulation. In the present work we have derived such a model. The system under investigation – disperse-filled composite material with inter-boundary layers of different properties – is represented by particle system; these classes of models can be characterized by high generality. Initial equation for the law of motion is sequentially extended with terms which account for different phenomena – conservative binary interaction, non-conservative interaction with environment, interaction with planar boundaries and non-conservative particle-particle interaction via inter-boundary layer. The reduction of the law of motion to the system of ordinary differential equations had opened the possibility for utilization of the vast majority of numerical algorithms for the prediction of the structural properties of nanomodified sulfur-based composite.

2009 ◽  
Vol 129 (6) ◽  
pp. 831-839
Author(s):  
Keisuke Udagawa ◽  
Sadatake Tomioka ◽  
Hiroyuki Yamasaki

2019 ◽  
Vol 97 ◽  
pp. 05023 ◽  
Author(s):  
Daler Sharipov ◽  
Sharofiddin Aynakulov ◽  
Otabek Khafizov

The paper deals with the development of mathematical model and numerical algorithms for solving the problem of transfer and diffusion of aerosol emissions in the atmospheric boundary layer. The model takes into account several significant parameters such as terrain relief, characteristics of underlying surface and weather-climatic factors. A series of numerical experiments were conducted based on the given model. The obtained results presented here show how these factors affect aerosol emissions spread in the atmosphere.


1990 ◽  
Vol 216 ◽  
pp. 255-284 ◽  
Author(s):  
C. J. Lee ◽  
H. K. Cheng

Global interaction of the boundary layer separating from an obstacle with resulting open/closed wakes is studied for a thin airfoil in a steady flow. Replacing the Kutta condition of the classical theory is the breakaway criterion of the laminar triple-deck interaction (Sychev 1972; Smith 1977), which, together with the assumption of a uniform wake/eddy pressure, leads to a nonlinear equation system for the breakaway location and wake shape. The solutions depend on a Reynolds numberReand an airfoil thickness ratio or incidence τ and, in the domain$Re^{\frac{1}{16}}\tau = O(1)$considered, the separation locations are found to be far removed from the classical Brillouin–Villat point for the breakaway from a smooth shape. Bifurcations of the steady-state solution are found among examples of symmetrical and asymmetrical flows, allowing open and closed wakes, as well as symmetry breaking in an otherwise symmetrical flow. Accordingly, the influence of thickness and incidence, as well as Reynolds number is critical in the vicinity of branch points and cut-off points where steady-state solutions can/must change branches/types. The study suggests a correspondence of this bifurcation feature with the lift hysteresis and other aerodynamic anomalies observed from wind-tunnel and numerical studies in subcritical and high-subcriticalReflows.


1998 ◽  
Vol 24 (2) ◽  
pp. 213-223 ◽  
Author(s):  
J.R. Fan ◽  
X.Y. Zhang ◽  
J. Jin ◽  
Y.Q. Zheng ◽  
K.F. Cen

1992 ◽  
Vol 240 (-1) ◽  
pp. 433 ◽  
Author(s):  
Kyung-Soo Yang ◽  
Philippe R. Spalart ◽  
Joel H. Ferziger

Author(s):  
Takanori Nakamura ◽  
Takatsugu Kameda ◽  
Shinsuke Mochizuki

Experiments were performed to investigate the effect of an adverse pressure gradient on the mean velocity and turbulent intensity profiles for an equilibrium boundary layer. The equilibrium boundary layer, which makes self-similar profiles, was constructed using a power law distribution of free stream velocity. The exponent of the law was adjusted to −0.188. The wall shear stress was measured with a drag balance by a floating element. The investigation of the law of the wall and the similarity of the streamwise turbulent intensity profile was made using both a friction velocity and new proposed velocity scale. The velocity scale is derived from the boundary layer equation. The mean velocity gradient profile normalized with the height and the new velocity scale exists the region where the value is almost constant. The turbulent intensity profiles normalized with the friction velocity strongly depend on the nondimensional pressure gradient near the wall. However, by mean of the local velocity scale, the profiles might be achieved to be similar with that of a zero pressure gradient.


Author(s):  
Dhananjay Radhakrishnan Subramaniam ◽  
David J. Gee

Innate immunity depends on the coordinated activity of multiple leukocytes at or near the site of tissue injury. Previous numerical studies have shown that an adherent leukocyte can hydrodynamically recruit a free-stream leukocyte towards the endothelial surface. Using a computer model we created, we numerically investigated the hydrodynamic recruitment of circulating cells due to the presence of a nearby adherent deformed cell. For circulating cells positioned one diameter or more above the reactive surface and subsequently involved in a glancing (out-of-plane) collision with an adherent cell, the simulation indicated that the free-stream cell could be driven closer to the surface. This behavior was seen to depend, in part, on the offset glancing distance. Furthermore, for a deformed adherent cell a similar effect was observed, but beginning at smaller offset glancing distances. We also examined the binary interaction for a free-stream cell initially less than one diameter above the surface. For fixed offset glancing distances, the binary interaction with a more significantly deformed adherent cell resulted in enhanced recruiting effectiveness, as quantified by the time needed for the cell to descend to a height where receptor-ligand interactions were possible.


Atmosphere ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 1087
Author(s):  
Eslam Reda Lotfy ◽  
Zambri Harun

The inertial sublayer comprises a considerable and critical portion of the turbulent atmospheric boundary layer. The mean windward velocity profile is described comprehensively by the Monin–Obukhov similarity theory, which is equivalent to the logarithmic law of the wall in the wind tunnel boundary layer. Similar logarithmic relations have been recently proposed to correlate turbulent velocity variances with height based on Townsend’s attached-eddy theory. The theory is particularly valid for high Reynolds-number flows, for example, atmospheric flow. However, the correlations have not been thoroughly examined, and a well-established model cannot be reached for all turbulent variances similar to the law of the wall of the mean-velocity. Moreover, the effect of atmospheric thermal condition on Townsend’s model has not been determined. In this research, we examined a dataset of free wind flow under a near-neutral range of atmospheric stability conditions. The results of the mean velocity reproduce the law of the wall with a slope of 2.45 and intercept of −13.5. The turbulent velocity variances were fitted by logarithmic profiles consistent with those in the literature. The windward and crosswind velocity variances obtained the average slopes of −1.3 and −1.7, respectively. The slopes and intercepts generally increased away from the neutral state. Meanwhile, the vertical velocity and temperature variances reached the ground-level values of 1.6 and 7.8, respectively, under the neutral condition. The authors expect this article to be a groundwork for a general model on the vertical profiles of turbulent statistics under all atmospheric stability conditions.


Sign in / Sign up

Export Citation Format

Share Document