Comparison of Two Coating Material Reflections of Hollow Light Guide Tube

2014 ◽  
Vol 1041 ◽  
pp. 412-415
Author(s):  
Lenka Janečková ◽  
Stanislav Darula ◽  
Daniela Bošová

This paper discusses tube transmission efficiency of two straight hollow light guides. Two samples with diameter of 530 mm and length 1170 mm were investigated under the artificial sky in the laboratory at ICA SAS in Bratislava. The entering luminous flux was calculated from measured illuminance in the point located on the top of light guide. Below the bottom of the light guide was located a set of measuring points on the special construction in the shape of a cross. In these points, one by one, the elementary illuminances were measured and the luminous fluxes leaving the light guide were calculated. Paper presents methodology for laboratory light transmission measurements and discusses effects of two various coating materials on light transmission efficiency of hollow light guides.

2019 ◽  
Vol 14 (1) ◽  
pp. 17-26
Author(s):  
Ayodeji Omishore ◽  
Petr Mohelník ◽  
Denis Míček

Abstract Results of daylight illuminance measurements of the field testing of two light guides with different roof installations is presented in the article. The first one is a common tubular system with a glass roof dome and the second one is a new light guide prototype with a concentrator head. The daylight illuminance was measured in a test chamber with the light guides installation. The measurements were carried out at the end of a summer season from August to September 2017. The measured data show differences in the daylight illuminance of the two tested light guides. The measured data were compared with simulation outputs in software Holigilm. In summary, it was found that the common light guide is about 37 percentage more efficient in light transmittance compared to the new light guide prototype. In temperate climate with dominant cloudy and partly cloudy daylight conditions the common light guide transmitted more light that the device with the concentrator head which reduced light transmission much more.


2020 ◽  
Vol 1 (1) ◽  
pp. 50-60
Author(s):  
Johannes Robert ◽  
Thomas Jüstel ◽  
Roland Ulber ◽  
Volkmar Jordan

Background: Photocatalytic oxidation is a promising tool for waste water treatment and decomposition of biologically non digestible substances. Immersed nanoscale catalyst particles from semiconductor materials such as TiO2 and ZnO can be excited by absorbed UV radiation, leading to hydroxyl-ion formation at the surface of the semiconductor and oxidative degradation of pollutants. Objective: This contribution deals with reactors equipped with catalyst coated light guides to combine the advantages of immobilized catalysts with nearly homogeneous irradiation. With experimental and theoretical methods the coupling and decoupling of radiation were investigated and the performance of catalyst coated light guides was tested by means of methylene-blue degradation. Methods: Radiation models, known from the recent literature, use single ray, parallel ray or multi ray models to approximate the light transmission. These models neglect Fresnel reflection and consider only coupling into the light guide. In this study, the LED was simulated as a Lambertian radiator using 10 4 rays with angle dependent intensities. This well-known model was extended with Fresnelreflection, which predicted the measured coupling efficiencies accurately. The simulations predict the decoupling and catalyst activation at the lateral surface of the light guide for two boundary cases, ideal matt and ideal reflective surfaces. To generate matt surfaces, the light guides were either scratched or coated with TiO2 p25 nanopowder. Sol-gel coating methods were used, to create reflective surfaces. Results: When using matt surfaces, the decoupling rate is very high: 80% of the radiant flux exits the light guide in less than 10 cm. If light guides with reflective surfaces are used, the radiant flux leaving the light guide is low: less than 10% of the radiation exited the light conductor in the first 10 cm. Methyleneblue degradation, seen as a model reaction, was used to determine the reactor performance by comparing the pseudo first order reaction coefficients. Due to the uniform light distribution along the length of the light guides and the resulting even formation of reactive radicals, the quantum yield was increased by a factor of 3, using sol-gel coated light guides, rather than powder coated light guides. Conclusion: The effectiveness of LED driven optical fiber reactors was intensified, if reflective surfaces are used instead of matt surfaces. These surfaces are achieved by sol gel chemistry. However, to use the complete amount of photons, which entered the optical fiber, very long light guides are needed.


2017 ◽  
Vol 19 (2) ◽  
pp. 124
Author(s):  
Jitka - Mohelnikova ◽  
Stanislav Darula ◽  
Ayodeji Omishore ◽  
Petr Mohelnik ◽  
Denis Micek

The article reviews the potential of light guide system equipped by a concentrator device capturing daylight applicable for illumination of building interiors and presents results of experiments on performance of its prototype. The main goal is focused on the comparison of traditional solutions and newly developed prototype of the light guide system and presents examination of its light transmission efficiency based on the laboratory experiments.


1991 ◽  
Vol 66 (1 Spec No) ◽  
pp. 59-61 ◽  
Author(s):  
J Robinson ◽  
M J Moseley ◽  
A R Fielder ◽  
S C Bayliss

Author(s):  
Caitlin Gerdes ◽  
Taylor N. Suess ◽  
Gary A. Anderson ◽  
Stephen P. Gent

Proper light penetration is an essential design consideration for effective algae growth in column photobioreactors. This research focuses on the placement of light guides within a photobioreactor (PBR), and the effect they have on heat transfer, mass transfer, bubble and fluid flow patterns, and mixing. Studies have been done on a rectangular column photobioreactor (34.29 cm long × 15.25 cm wide × 34.29 cm tall) with two light panels along the front and back of the PBR. A bubble sparger is placed along the center of the bottom length of the PBR with both height and width of 1.27 cm and a length of 33.02 cm. Different configurations and numbers of light guides (1.27 cm diameter) running horizontally from the front to the back of the PBR are modeled using the Computational Fluid Dynamics (CFD) software Star-CCM+. It is hypothesized that the addition of light guides will change the flow pattern but not adversely affect the heat or mass transfer of the carbon dioxide bubbles within the PBR. Potential concerns of light guide placement include inhibiting the flow of the carbon dioxide bubbles or creating regions of high temperature, which could potentially kill the algae. Benefits of light guides include increased light penetration and photosynthesis within the PBR. Five different light guide setups are tested with the carbon dioxide bubbles and water modeled as a turbulent multiphase gas-liquid mixture. The near wall standard k-epsilon two layer turbulence model was used, as it takes into account the viscosity influences between the liquid and gaseous phases. Eight different bubble volumetric flow rates are simulated. The bubble flow patterns, temperature distribution, Nusselt number, Reynolds number, and velocity are all analyzed. The results indicate square arrays of light guides give the most desirable velocity distribution, with less area of zero velocity compared to the staggered light guide setup. Temperature distribution is generally even for all configurations of light guides.


Holzforschung ◽  
2000 ◽  
Vol 54 (2) ◽  
pp. 189-196 ◽  
Author(s):  
Eva Liptáková ◽  
Jozef Kúdela ◽  
Ján Sarva

Summary This paper deals with the evaluation of wood—wetting process with coating materials on the basis of interactions of surface forces on phase boundary. The obtained results are compared with the actual state in the system wood—coating material. Primary ability of coating materials—spontaneous spreading over the wood surface has been proved. There is also the secondary influence of rheological properties of coating materials causing deformations of the phase boundary, non-perfect wetting of the wood surface and apparent lowering of adhesion work. The influence of rheological properties has been expressed by using the coefficient F the meaning of which follows from the comparison between results of adhesion work computed according to modified Young-Dupré equation and of adhesion work determined on the basis of the interactions of surface forces on the phase boundary between wood and liquid coating materials. A direct dependence between the values of the coefficient F and coating materials viscosity has been proved.


Author(s):  
Elif Güney ◽  
Mürsel Alper ◽  
Mürşide Hacıismailoğlu

This study presents the optical design of light guide prisms for automotive tail light applications to obtain the optimum luminous intensity and the illuminance uniformity. The design was achieved using optical design software, SPEOS. By considering the axial luminous intensity and legal requirements, the optimum prism angles of light guides were determined by simulations. After determining the prism angles, the effect of different surface roughness on the luminous intensity and the illuminance uniformity was investigated. The light guides designed by considering data from the simulation were manufactured as prototypes and their photometrical measurements were made. These measurements were compared to the simulation results. It was observed that simulation and prototype results are well in agreement with each other. Furthermore, it was found that as the surface roughness increases both the luminous intensity decreases and the illumination becomes more uniform.


Author(s):  
DENI RAHMAT ◽  
LILIEK NURHIDAYATI ◽  
MARCELLA MARCELLA ◽  
ROS SUMARNY ◽  
DIAN RATIH LAKSMITAWATI

Objective: The aim of the present study was to formulate bromelain into nanoparticles in order to improve its stability and activity. Methods: Crude bromelain was prepared by protein precipitation from the pineapple stem juice using ammonium sulphate at the concentration of 60% (w/v). Nanoparticles containing crude bromelain were generated using the ionic gelation method with hydroxypropyl cellulose–cysteamine (HPC-cysteamine) conjugate as a matrix. Crude bromelain was then added to the HPC-cysteamine solution for ionic interaction to construct the nanoparticles, which were then analyzed for their particle size and zeta potential. The resulting nanoparticles were mixed with adenosine diphosphate (ADP) to perform anti-platelet aggregation. Results: The nanoparticle had 928.3 nm in particle size and-7.25 mV in zeta potential. Anti-platelet activity of crude bromelain and the nanoparticles were determined with modification of light transmission aggregometry (LTA), in which ADP was used to induce an aggregation while a spectrophotometer UV-Vis was used to measure the absorbance at the wavelength of 600 nm. The result showed that crude bromelain and the nanoparticles rendered percentage inhibition of 8.00±1.17% and 48.56±11.19%, respectively. Conclusion: Based on the result of a one-way analysis of variance (ANOVA), it was concluded that there was a significant difference in percentage inhibition between the two samples. The nanoparticles demonstrated a better anti-platelet aggregation activity compared to crude bromelain.


2018 ◽  
Vol 25 (35) ◽  
pp. 4553-4586 ◽  
Author(s):  
Jonas Schubert ◽  
Munish Chanana

Within the last two decades, the field of nanomedicine has not developed as successfully as has widely been hoped for. The main reason for this is the immense complexity of the biological systems, including the physico-chemical properties of the biological fluids as well as the biochemistry and the physiology of living systems. The nanoparticles’ physicochemical properties are also highly important. These differ profoundly from those of freshly synthesized particles when applied in biological/living systems as recent research in this field reveals. The physico-chemical properties of nanoparticles are predefined by their structural and functional design (core and coating material) and are highly affected by their interaction with the environment (temperature, pH, salt, proteins, cells). Since the coating material is the first part of the particle to come in contact with the environment, it does not only provide biocompatibility, but also defines the behavior (e.g. colloidal stability) and the fate (degradation, excretion, accumulation) of nanoparticles in the living systems. Hence, the coating matters, particularly for a nanoparticle system for biomedical applications, which has to fulfill its task in the complex environment of biological fluids, cells and organisms. In this review, we evaluate the performance of different coating materials for nanoparticles concerning their ability to provide colloidal stability in biological media and living systems.


Sign in / Sign up

Export Citation Format

Share Document