scholarly journals IN VITRO ANTI-PLATELET AGGREGATION ACTIVITY OF HYDROXYPROPYL CELLULOSE–CYSTEAMINE BASED NANOPARTICLES CONTAINING CRUDE BROMELAIN

Author(s):  
DENI RAHMAT ◽  
LILIEK NURHIDAYATI ◽  
MARCELLA MARCELLA ◽  
ROS SUMARNY ◽  
DIAN RATIH LAKSMITAWATI

Objective: The aim of the present study was to formulate bromelain into nanoparticles in order to improve its stability and activity. Methods: Crude bromelain was prepared by protein precipitation from the pineapple stem juice using ammonium sulphate at the concentration of 60% (w/v). Nanoparticles containing crude bromelain were generated using the ionic gelation method with hydroxypropyl cellulose–cysteamine (HPC-cysteamine) conjugate as a matrix. Crude bromelain was then added to the HPC-cysteamine solution for ionic interaction to construct the nanoparticles, which were then analyzed for their particle size and zeta potential. The resulting nanoparticles were mixed with adenosine diphosphate (ADP) to perform anti-platelet aggregation. Results: The nanoparticle had 928.3 nm in particle size and-7.25 mV in zeta potential. Anti-platelet activity of crude bromelain and the nanoparticles were determined with modification of light transmission aggregometry (LTA), in which ADP was used to induce an aggregation while a spectrophotometer UV-Vis was used to measure the absorbance at the wavelength of 600 nm. The result showed that crude bromelain and the nanoparticles rendered percentage inhibition of 8.00±1.17% and 48.56±11.19%, respectively. Conclusion: Based on the result of a one-way analysis of variance (ANOVA), it was concluded that there was a significant difference in percentage inhibition between the two samples. The nanoparticles demonstrated a better anti-platelet aggregation activity compared to crude bromelain.

2017 ◽  
Vol 95 (8) ◽  
pp. 719-723
Author(s):  
Il’ya N. Medvedev

This work was aimed to elucidate the level of in vitro and in vivo aggregation activity of platelets and the functional significance of individual mechanisms of its regulation in patients with grade III arterial hypertension and metabolic syndrome. The study included 29 adult patients (15 men and 14 women) and 25 clinically healthy subjects of similar age. Biochemical, hematological and statistical methods were used. Marked dyslipidemia was associated with active lipid peroxidation. Plasma thromboxane B2 level was increased by 84,8% while 6-ketoprostaglandin F1α level was decreased by 17,9% and the total amount of NO metabolites by 28,7%. The degree of platelet aggregation and their aggregation with collagen 25,0 and 27,5% lower than the respective control values while the respective indices of their aggregation with ristomycin were 25,7 and 46,4% higher. The degree of platelet aggregation and their aggregation with ADP inducer were 25,7 and 58,4% higher than in control while the platelet-discocyte levels were reduced to 48,6 ± 0,4%. The sum of active platelet forms reached 51,4 ± 0,12% vs 17,9 ± 0,09% in control was, the number of small and large aggregates 18,6 ± 0,08 and 5,4 ± 0,04 per 1000 free platelets respectively vs 2,9 ± 0,06 и 0,2 ± 0,06 in control. Excess platelet activity in the patients was due to their enhanced adhesive and aggregative potential and reduced ability to disaggregate. The most important causs of thrombocytopathy was AH, negative changes in plasma lipid composition, and enhanced lipid peroxidation.


2018 ◽  
Vol 25 (03) ◽  
pp. 448-453
Author(s):  
Sidra Mushtaq ◽  
Mufakhara Fatima ◽  
Zobia Mushtaq ◽  
Roohi Manzoor Khan ◽  
Muhammad Naeem Iqbal ◽  
...  

The herbal use for medical purposes is increasing world over. Aloe vera is onesuch herb with established anti-inflammatory action. It has great prospect in terms of replacingtraditional NSAIDS due to better side effect profile on gastrointestinal tract but its effect onplatelet aggregation is what needs to be determined. Objectives: This study was designed tosee the concentration dependent action of Aloe vera gel on platelet aggregation. Study Design:Comparative study. Setting: Post Graduate Medical Institute Lahore, Children Hospital Lahore.Duration of Study: One Year. Methodology: This study was conducted on healthy volunteersselected from staff and students of Ameer-ud-din Medical College. After determining baselineHb and platelet counts, PRP was prepared and then incubated with 2 different concentrationsof Aloe vera low (AVL) and Aloe vera high (AVH) for 30 minutes. Aggregation was stimulatedby adding the agonist arachidonic acid. Light transmission aggregometer was used to recordplatelet aggregation activity graphically for 3 minutes. Results: The data was analyzed usingSPSS version 20. Kruskal Wallis H test was performed to compare the platelet aggregation,which revealed that platelet aggregation with AVL and AVH were statistically significantly lower,amounting to 25.89% and 16.72% respectively as compared to 88.28% observed with control.Conclusion: This study has established in vitro anti-platelet effect of Aloe vera which is dosedependent.


1983 ◽  
Vol 245 (6) ◽  
pp. R776-R784
Author(s):  
T. M. Davis ◽  
E. Bown

The aggregometer monitors changes in light transmission through stirred suspensions of aggregation platelets. Arbitrary measurements from aggregometer recorder tracings have been used to investigate platelet aggregation without regard to mechanisms involved. To determine the applicability of particle collision theory to assessment of in vitro platelet sensitivity to proaggregating agents, platelet-rich plasma (PRP) from five volunteers was used to obtain recorder tracings after addition of ADP in five doses (0.4-4.0 mumol/l PRP) to aliquots of PRP stirred and incubated in an aggregometer. Using the equation describing light transmission through particulate suspensions, particle collision theory, and s (the probability of particle union after collision), a subject- and dose-independent relationship between aggregation rate (dn/dt) and particle number (n) at the recorder tracing inflection point was found (dn/dt = -k X s X n1.56, where k is a constant dependent on particle size and speed and on the proportion of unreactive particles). Determinations of mean particle size at the tracing inflection point indicated that k was also dose independent. Dose-response curves of ADP added vs. s could therefore be constructed. This methodology provides conveniently obtainable quantitative information concerning in vitro platelet “stickiness.”


Author(s):  
Rupali L. Shid ◽  
Shashikant N. Dhole ◽  
Nilesh Kulkarni ◽  
Santosh L Shid

Poor water solubility and slow dissolution rate are issues for the majority of upcoming and existing biologically active compounds. Simvastatin is poorly water-soluble drug and its bioavailability is very low from its crystalline form. The purpose of this study wasto increase the solubility and dissolution rate of simvastatin by the  preparation of nanosuspension by emulsification solvent diffusion method at laboratory scale. Prepared nanosus-pension was evaluated for its particle size and in vitro dissolution study and characterized by zeta potential,differential scanning calorimetry (DSC) and X-Ray diffractometry (XRD), motic digital microscopy, entrapment efficiency, total drug content, saturated solubility study and in vivo study. A 23 factorial design was employed to study the effect of independent variables, amount of SLS (X1), amount of PVPK-30 (X2) and poloxamer-188 (X3) and dependent variables are total drug content and polydispersity Index. The obtained results showed that particle size (nm) and rate of dissolution has been improved when nanosuspension prepared with the higherconcentration of PVPK-30 with the higher concentration of PVP K-30 and Poloxamer-188 and lower concentration of SLS. The particle size and zeta potential of optimized formulation was found to be 258.3 nm and 23.43. The rate of dissolution of the optimized nanosuspension was enhanced (90% in 60min), relative to plain simvastatin  (21% in 60 min), mainly due to the formation of nanosized particles. These results indicate the suitability of 23 factorial  design for preparation of simvastatin loaded nano-suspension significantly improved in vitro dissolution rate and thus possibly enhance fast onset of therapeutic drug effect. In vivo study shows increase in bioavailability in nanosuspension formulation than the plain simvastatin drug.


2020 ◽  
Vol 26 (14) ◽  
pp. 1543-1555 ◽  
Author(s):  
Meltem E. Durgun ◽  
Emine Kahraman ◽  
Sevgi Güngör ◽  
Yıldız Özsoy

Background: Topical therapy is preferred for the management of ocular fungal infections due to its superiorities which include overcoming potential systemic side effects risk of drugs, and targeting of drugs to the site of disease. However, the optimization of effective ocular formulations has always been a major challenge due to restrictions of ocular barriers and physiological conditions. Posaconazole, an antifungal and highly lipophilic agent with broad-spectrum, has been used topically as off-label in the treatment of ocular fungal infections due to its highly lipophilic character. Micellar carriers have the potential to improve the solubility of lipophilic drugs and, overcome ocular barriers. Objective: In the current study, it was aimed optimization of posaconazole loaded micellar formulations to improve aqueous solubility of posaconazole and to characterize the formulations and to investigate the physical stability of these formulations at room temperature (25°C, 60% RH), and accelerated stability (40°C, 75% RH) conditions. Method: Micelles were prepared using a thin-film hydration method. Pre-formulation studies were firstly performed to optimize polymer/surfactant type and to determine their concentration in the formulations. Then, particle size, size distribution, and zeta potential of the micellar formulations were measured by ZetaSizer Nano-ZS. The drug encapsulation efficiency of the micelles was quantified by HPLC. The morphology of the micelles was depicted by AFM. The stability of optimized micelles was evaluated in terms of particle size, size distribution, zeta potential, drug amount and pH for 180 days. In vitro release studies were performed using Franz diffusion cells. Results: Pre-formulation studies indicated that single D-ɑ-tocopheryl polyethylene glycol succinate (TPGS), a combination of it and Pluronic F127/Pluronic F68 are capable of formation of posaconazole loaded micelles at specific concentrations. Optimized micelles with high encapsulation efficiency were less than 20 nm, approximately neutral, stable, and in aspherical shape. Additionally, in vitro release data showed that the release of posaconazole from the micelles was higher than that of suspension. Conclusion: The results revealed that the optimized micellar formulation of posaconazole offers a potential approach for topical ocular administration.


Author(s):  
Gülsel Yurtdaş Kırımlıoğlu ◽  
Sinan Özer ◽  
Gülay Büyükköroğlu ◽  
Yasemin Yazan

Background: Considering the low ocular bioavailability of conventional formulations used for ocular bacterial infection treatment, there’s a need for designing efficient novel drug delivery systems that may enhance of precorneal retention time and corneal permeability. Aim and Objective: The current research focuses on developing nanosized and non-toxic Eudragit® RL 100 and Kollidon® SR nanoparticles loaded with moxifloxacin hydrochloride (MOX) for its prolonged release to be promising for effective ocular delivery. Methods: In this study, MOX was incorporation was carried out by spray drying method aiming ocular delivery. In vitro characteristics were evaluated in detail with different methods. Results: MOX was successfully incorporated into Eudragit® RL 100 and Kollidon® SR polymeric nanoparticles by spray-drying process. Particle size, zeta potential, entrapment efficiency, particle morphology, thermal, FTIR, XRD and NMR analyses and MOX quantification using HPLC method were carried out to evaluate the nanoparticles prepared. MOX loaded nanoparticles demonstrated nanosized and spherical shape while in vitro release studies demonstrated modified release pattern which followed Korsmeyer-Peppas kinetic model. Following successful incorporation of MOX into the nanoparticles, the formulation (MOX: Eudragit® RL 100, 1:5) (ERL-MOX 2) was selected for further studies by the reason of its better characteristics like cationic zeta potential, smaller particle size, narrow size distribution and more uniform prolonged release pattern. Moreover, ERL-MOX 2 formulation remained stable for 3 months and demonstrated higher cell viability values for MOX. Conclusion: In vitro characterization analyses showed that non-toxic, nano-sized and cationic ERLMOX 2 formulation has the potential of enhancing ocular bioavailability.


2019 ◽  
Vol 15 (1) ◽  
pp. 87-102 ◽  
Author(s):  
Surbhi Dhawan ◽  
Sanju Nanda

Background: Since ancient times, people have been using natural resources for photoprotection purposes. One such highly recognised natural agent is pomegranate seed oil, considered as wonder oil owing to the presence of several beneficial phytoconstituents. </P><P> Objective: The study aimed to establish the photoprotective potential of pomegranate seed oil through various in vitro and biochemical studies along with the formation of nanoemulsion, an efficient topical delivery system for the oil. </P><P> Method: Photo-protective potential of the oil was estimated by determining in vitro antioxidant and anti-inflammatory activity, total phenolic content, anti elastase, antihyaluronidase and anticollagenase activities of the oil. Ultrasonication method was used to formulate nanoemulsions. The optimisation was done following the central composite design. The characterisation was done by particle size analysis, zeta potential, polydispersity index, pH, viscosity, stability testing and transmission electron microscopy. The optimised nanoemulsion was loaded into a gel base for topical application and further release studies were carried out. </P><P> Results: The IC50 values of anti-elastase, anti-collagenase and anti-hyaluronidase were found to be 309 mg/ml, 4 mg/ml and 95 mg/ml respectively. The results of anti-oxidant and anti-inflammatory activity were also significant, which thereby established the photo-protective potential of the oil. The optimum batch 2 had particle size 83.90 nm, 0.237 PDI and -5.37 mV zeta potential. The morphology was confirmed by TEM. Batch 2 was incorporated into a gel base and release studies showed 74.12 % release within 7 hours. </P><P> Conclusion: Pomegranate seed oil possesses a potential photo-protective ability. Nanoemulsions proved to be a promising carrier for the topical delivery of the oil.


Author(s):  
Soma Sundaram

AbstractAim and Objectives The present study was carried out to show the potential neuroprotective effects in both invitro and invivo pramipexole dihydrochloride nanosuspension for the treatment in Parkinson’s disease.Materials and Methods: Nanosuspension of pramipexole dihydrochloride was prepared with MPEG-PCL and Pluronic F68 by the process of modified nanoprecipitation technique with different concentrations of MPEG-PCL. The particle size, zeta potential, SEM, TEM and invitro dug release where performed. The cell viability study was performed by using SH-SY5Y cells. Further the formulation is evaluated for its antioxidant potential against rotenone induced neuronal damage in Wister rats such as enzymatic, non enzymatic antioxidants and histopathological evaluation.Result and Discussion: The nanoformulation shows least particle size of 143 nm and maximum zeta potential value 33.4 mv with 88.53% entrapment efficiency were observed with PMPNP 2 formulation. The SEM, TEM and invitro dug release of PMPNP 2 were shows spherical shape with controlled release when compared to other formulations. Further the MTT assay were performed by using SH-SY5Y cells which shows more than 50 % cell viability with 50 µl of PPMNP 2 nanoformulation. Further the antioxidant potential done in rotenone induced neuronal damage in Wister rats. The results showed elevation in the levels of enzymatic and non enzymatic antioxidants compared with neuronal toxic group. Further nanoformulation group showed decrease in levels of LPO which correlates with histopathological architecture.Conclusion: Our study concluded that nanoformulation showed better protective potential in both invitro and invivo compare to free drug for the treatment in Parkinson’s disease.Keywords: Pramipexoledihydrochloride; MPEG-PCL; SH-SY5Y cells; Nanoprecipitation; Parkinson’s disease.


Author(s):  
Mihir K Patel ◽  
Kiranj K. Chaudagar ◽  
Anita A. Mehta

Objective: Although recent advances in the treatment of congestive heart disease, mortality among patients’ remains a questionable remark. Therefore, we evaluated the role of capsaicin on in vitro and ex vivo platelet aggregation induced by Adenosine Di-Phosphate (ADP) as well as in in vivo thrombosis models and role of NO, KATP was also identified in the capsaicin-induced anti-platelet animal model as well as in vivo model of arterial thrombosis.Methods: According to body weight wistar rats were divided into five groups. Group I and Group II was treated with saline and capsaicin (3 mg/kg, i. v), while animals from Group III were treated with N(ω)-nitro-L-arginine methyl ester (L-NAME) (30 mg/kg, i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group IV animals were treated with glibenclamide (10 mg/kg,i. v) 30 min before administration of capsaicin (3 mg/kg, i. v). Group V was considered as a positive control and administered clopidogrel (30 mg/kg, p. o). Animals were subjected for in vitro, ex-vivo platelet aggregation assay. ADP (30µM) was utilized as an aggregating agent in these experiments. After these assays; animals of each group were subjected for subaqueous tail bleeding time in a rat model and FeCl3-induced arterial thrombosis model in rats.Results: In ADP-induced in vitro platelet aggregation, a significant reduction in % platelet aggregation was observed at 50µM (64.35±4.641) and 100µM (52.72±4.192) concentration of capsaicin as compared to vehicle control (85.82±3.716). Capsaicin (3 mg/kg, i. v) also showed a significant reduction (49.53±4.075) in ex-vivo ADP-induced platelet aggregation as compared to vehicle control (89.38±2.057). In FeCl3 induced arterial thrombosis model, Capsaicin (3 mg/kg, i. v) exhibited an increase in time to occlusion in this rodent model and presence of the L-NAME and glibenclamide had inhibited the activity of capsaicin.Conclusion: In our study, capsaicin (50 µM, 100µM) exhibited potent anti-platelet activity in ADP-induced platelet aggregation, similarly capsaicin exhibited significant anti-platelet action in the ex-vivo study. Moreover, the presence of L-NAME and glibenclamide inhibited the anti-thrombotic and anti-platelet action of capsaicin. Therefore, it was concluded that NO and KATP may be involved in the anti-thrombotic action of capsaicin.


Author(s):  
Suriyakala Perumal Chandran ◽  
Kannikaparameswari Nachimuthu

Objective: Colorectal cancer is one of the most commonly diagnosed cancer and also most common gastrointestinal malignancy with high prevalence rate in the younger population. Usually, cancer cells are surrounded by a fibrin coat which is resistant to fibrinolytic degradation. This fibrin coat is act as self-protective against natural killing mechanism. The main objective was to prepare papain-loaded solid lipid nanoparticles (P-SLN) by melt dispersion-ultrasonication method and investigated the cytotoxic efficacy against colorectal adenocarcinoma (human colorectal adenocarcinoma [HCT 15]) cells.Methods: Optimized polymer ratio was characterized by differential scanning calorimetry, Fourier-transform infrared, X-ray diffraction, scanning electron microscopy, entrapment efficiency, particle size and zeta potential analysis, in vitro drug release, and in vitro cytotoxicity studies on HCT-15 colorectal adenocarcinoma cells.Results: The results showed that the particle size, morphological character and zeta potential value of optimized batch P-SLN were 265 nm, spherical and −26.5 Mv, respectively. The in vitro drug profile of P-SLN exhibited that it produced sustain drug release, and the cell viability of HCT-15 against P-SLN shown better efficacy than pure papain enzyme.Conclusion: P-SLNs were successfully prepared and investigated the in vitro drug release and in vitro cell viability against HCT-15 cell line.


Sign in / Sign up

Export Citation Format

Share Document