Modelling and Experimental Investigation of Luminous Coupling in UVLED Driven Optical Fiber Reactors

2020 ◽  
Vol 1 (1) ◽  
pp. 50-60
Author(s):  
Johannes Robert ◽  
Thomas Jüstel ◽  
Roland Ulber ◽  
Volkmar Jordan

Background: Photocatalytic oxidation is a promising tool for waste water treatment and decomposition of biologically non digestible substances. Immersed nanoscale catalyst particles from semiconductor materials such as TiO2 and ZnO can be excited by absorbed UV radiation, leading to hydroxyl-ion formation at the surface of the semiconductor and oxidative degradation of pollutants. Objective: This contribution deals with reactors equipped with catalyst coated light guides to combine the advantages of immobilized catalysts with nearly homogeneous irradiation. With experimental and theoretical methods the coupling and decoupling of radiation were investigated and the performance of catalyst coated light guides was tested by means of methylene-blue degradation. Methods: Radiation models, known from the recent literature, use single ray, parallel ray or multi ray models to approximate the light transmission. These models neglect Fresnel reflection and consider only coupling into the light guide. In this study, the LED was simulated as a Lambertian radiator using 10 4 rays with angle dependent intensities. This well-known model was extended with Fresnelreflection, which predicted the measured coupling efficiencies accurately. The simulations predict the decoupling and catalyst activation at the lateral surface of the light guide for two boundary cases, ideal matt and ideal reflective surfaces. To generate matt surfaces, the light guides were either scratched or coated with TiO2 p25 nanopowder. Sol-gel coating methods were used, to create reflective surfaces. Results: When using matt surfaces, the decoupling rate is very high: 80% of the radiant flux exits the light guide in less than 10 cm. If light guides with reflective surfaces are used, the radiant flux leaving the light guide is low: less than 10% of the radiation exited the light conductor in the first 10 cm. Methyleneblue degradation, seen as a model reaction, was used to determine the reactor performance by comparing the pseudo first order reaction coefficients. Due to the uniform light distribution along the length of the light guides and the resulting even formation of reactive radicals, the quantum yield was increased by a factor of 3, using sol-gel coated light guides, rather than powder coated light guides. Conclusion: The effectiveness of LED driven optical fiber reactors was intensified, if reflective surfaces are used instead of matt surfaces. These surfaces are achieved by sol gel chemistry. However, to use the complete amount of photons, which entered the optical fiber, very long light guides are needed.

2014 ◽  
Vol 1041 ◽  
pp. 412-415
Author(s):  
Lenka Janečková ◽  
Stanislav Darula ◽  
Daniela Bošová

This paper discusses tube transmission efficiency of two straight hollow light guides. Two samples with diameter of 530 mm and length 1170 mm were investigated under the artificial sky in the laboratory at ICA SAS in Bratislava. The entering luminous flux was calculated from measured illuminance in the point located on the top of light guide. Below the bottom of the light guide was located a set of measuring points on the special construction in the shape of a cross. In these points, one by one, the elementary illuminances were measured and the luminous fluxes leaving the light guide were calculated. Paper presents methodology for laboratory light transmission measurements and discusses effects of two various coating materials on light transmission efficiency of hollow light guides.


2019 ◽  
Vol 14 (1) ◽  
pp. 17-26
Author(s):  
Ayodeji Omishore ◽  
Petr Mohelník ◽  
Denis Míček

Abstract Results of daylight illuminance measurements of the field testing of two light guides with different roof installations is presented in the article. The first one is a common tubular system with a glass roof dome and the second one is a new light guide prototype with a concentrator head. The daylight illuminance was measured in a test chamber with the light guides installation. The measurements were carried out at the end of a summer season from August to September 2017. The measured data show differences in the daylight illuminance of the two tested light guides. The measured data were compared with simulation outputs in software Holigilm. In summary, it was found that the common light guide is about 37 percentage more efficient in light transmittance compared to the new light guide prototype. In temperate climate with dominant cloudy and partly cloudy daylight conditions the common light guide transmitted more light that the device with the concentrator head which reduced light transmission much more.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Xiujuan Qin ◽  
Li Cui ◽  
Guangjie Shao

Ti-doped ZnO sol-composite films were prepared on the glass substrate by the two-step sol-gel technique. X-ray diffraction, Uv-Vis spectrophotometer, and FS spectrum of composite films were used to help make structure characterization and optical performance testing. The results showed that the composite was a mixture of ZnO + Zn2TiO4. Because of synergistic effect of both semiconductor oxides, composite films had a wide range of spectral response in the visible region, and the absorption band edge was about 510 nm, and the Green Belt of composite films luminous significantly enhanced. Photocatalytic oxidation experiments showed that using the composite films treatment (16.5 ml, l0 mg/L methyl orange aqueous solution)/cm2, the decolorization rate of methyl-orange was 90% after 3 hours irradiation.


2021 ◽  
Author(s):  
Mahesh Gaidhane ◽  
Deepak Taikar ◽  
Pravin Gaidhane ◽  
Kalpana Nagde

Abstract Nanocrystalline α-Fe2O3 is synthesized by sol-gel technique. The prepared nanomaterial was characterized by X-ray diffraction (XRD), SEM, TEM, Fourier Transform Infrared (FTIR) spectroscopy, Vibrating Sample Magnetometry (VSM) and photoluminescence (PL) techniques. X-ray powder diffraction analysis confirmed the formation of α-Fe2O3. Electron microscopy showed spherical morphologies with an average particle size of 30-40 nm. The magnetic property of the prepared material was studied by VSM at room temperature. VSM study shows superparamagnetic nature of the synthesized nanoparticles. Photoluminescence (PL) emission spectra show intense broad emission band centered at 570 nm with 393 nm excitation indicating its usefulness for w-LED application. The CIE-chromaticity color coordinates of prepared material were calculated. The photocatalytic activity of the α-Fe2O3 nanoparticles was analyzed and the nanopowder exhibited good photocatalytic activity for the removal AO7 from its aqueous solution.


Author(s):  
Caitlin Gerdes ◽  
Taylor N. Suess ◽  
Gary A. Anderson ◽  
Stephen P. Gent

Proper light penetration is an essential design consideration for effective algae growth in column photobioreactors. This research focuses on the placement of light guides within a photobioreactor (PBR), and the effect they have on heat transfer, mass transfer, bubble and fluid flow patterns, and mixing. Studies have been done on a rectangular column photobioreactor (34.29 cm long × 15.25 cm wide × 34.29 cm tall) with two light panels along the front and back of the PBR. A bubble sparger is placed along the center of the bottom length of the PBR with both height and width of 1.27 cm and a length of 33.02 cm. Different configurations and numbers of light guides (1.27 cm diameter) running horizontally from the front to the back of the PBR are modeled using the Computational Fluid Dynamics (CFD) software Star-CCM+. It is hypothesized that the addition of light guides will change the flow pattern but not adversely affect the heat or mass transfer of the carbon dioxide bubbles within the PBR. Potential concerns of light guide placement include inhibiting the flow of the carbon dioxide bubbles or creating regions of high temperature, which could potentially kill the algae. Benefits of light guides include increased light penetration and photosynthesis within the PBR. Five different light guide setups are tested with the carbon dioxide bubbles and water modeled as a turbulent multiphase gas-liquid mixture. The near wall standard k-epsilon two layer turbulence model was used, as it takes into account the viscosity influences between the liquid and gaseous phases. Eight different bubble volumetric flow rates are simulated. The bubble flow patterns, temperature distribution, Nusselt number, Reynolds number, and velocity are all analyzed. The results indicate square arrays of light guides give the most desirable velocity distribution, with less area of zero velocity compared to the staggered light guide setup. Temperature distribution is generally even for all configurations of light guides.


2004 ◽  
Vol 4 (3) ◽  
pp. 322-328 ◽  
Author(s):  
S. Tao ◽  
C.B. Winstead ◽  
R. Jindal ◽  
J.P. Singh

1993 ◽  
Vol 59 (1-2) ◽  
pp. 528-532 ◽  
Author(s):  
P. M. Pakhomov ◽  
M. A. Maryukov ◽  
V. M. Levin ◽  
A. S. Chegolya

Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1245
Author(s):  
Bárbara R. Gomes ◽  
Rui Araújo ◽  
Tatiana Sousa ◽  
Rita B. Figueira

The use of advanced sensing devices for concrete and reinforced concrete structures (RCS) is considered a rational approach for the assessment of repair options and scheduling of inspection and maintenance strategies. The immediate benefits are cost reduction and a reliable prevention of unpredictable events. The use of optical fiber sensors (OFS) for such purposes has increased considerably in the last few years due to their intrinsic advantages. In most of the OFS, the chemical transducer consists of immobilized chemical reagents placed in the sensing region of the optical sensor by direct deposition or by encapsulation in a polymeric matrix. The choice of the support matrix impacts directly on the performance of the OFS. In the last two decades, the development of OFS functionalized with organic–inorganic hybrid (OIH) sol–gel membranes have been reported. Sol–gel route is considered a simple method that offers several advantages when compared to traditional synthesis processes, allowing to obtain versatile materials with unique chemical and physical properties, and is particularly valuable in the design of OIH materials. This review will provide an update of the current state-of-the-art of the OFS based on OIH sol-gel materials for concrete and RCS since 2016 until mid-2021. The main achievements in the synthesis of OIH membranes for deposition on OFS will be discussed. The challenges and future directions in this field will also be considered, as well as the main limitations of OFS for RCS monitoring.


1986 ◽  
Vol 88 ◽  
Author(s):  
M. E. Elias ◽  
A. M. Elias

ABSTRACTA new method for optical fiber production is shown. Hydrolytic polycondensation of tetramethoxysilane using a low concentration of α-picoline, 1.56×10−3% in water, gives SiO2 gel which was dried at 22 °C to a transparent amorphous material.The densification process shows an exponential time dependence with a final value of 2.253 g/cm3 after 30 days. The specific surface area of the porous gel varies from 500 to 600 m2/g but pores are eliminated by the sintering process. Before sintering the gel, it is treated under an oxidizing atmosphere above 700 °C. At 1200 °C the pores are eliminated and a solid glass rod obtained.After the sintering process a fiber is obtained from the rod which shows a transmission loss as low as 5.5 dB/km at 840nm.


Catalysts ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 423 ◽  
Author(s):  
Kamonchanok Roongraung ◽  
Surawut Chuangchote ◽  
Navadol Laosiripojana

TiO2-based photocatalysts synthesized by the microwave-assisted sol-gel method was tested in the photocatalytic glucose conversion. Modifications of TiO2 with type-Y zeolite (ZeY) and metals (Ag, Cu, and Ag-Cu) were developed for increasing the dispersion of TiO2 nanoparticles and increasing the photocatalytic activity. Effects of the TiO2 dosage to zeolite ratio (i.e., TiO2/ZeY of 10, 20, 40, and 50 mol %) and the silica to alumina ratio in ZeY (i.e., SiO2:Al2O3 of 10, 100, and 500) were firstly studied. It was found that the specific surface area of TiO2/ZeY was 400–590 m2g−1, which was higher than that of pristine TiO2 (34.38 m2g−1). The good properties of 20%TiO2/ZeY photocatalyst, including smaller particles (13.27 nm) and high surface area, could achieve the highest photocatalytic glucose conversion (75%). Yields of gluconic acid, arabinose, xylitol, and formic acid obtained from 20%TiO2/ZeY were 9%, 26%, 4%, and 35%, respectively. For the effect of the silica to alumina ratio, the highest glucose conversion was obtained from SiO2:Al2O3 ratio of 100. Interestingly, it was found that the SiO2:Al2O3 ratio affected the selectivity of carboxylic products (gluconic acid and formic acid). At a low ratio of silica to alumina (SiO2:Al2O3 = 10), higher selectivity of the carboxylic products (gluconic acid = 29% and formic acid = 32%) was obtained (compared with other higher ratios). TiO2/ZeY was further loaded by metals using the microwave-assisted incipient wetness impregnation technique. The highest glucose conversion of 96.9 % was obtained from 1 wt. % Ag-TiO2 (40%)/ZeY. Furthermore, the bimetallic Ag-Cu-loaded TiO2/ZeY presented the highest xylitol yield of 12.93%.


Sign in / Sign up

Export Citation Format

Share Document