Dynamic Recrystallization Microstructure Grain Size Prediction of 7075 Aluminum Alloy Piston Prepared by Isothermal Extrusion

2014 ◽  
Vol 1042 ◽  
pp. 81-86 ◽  
Author(s):  
Yue Wu ◽  
Wen Lin Chen ◽  
Yan Gao ◽  
Rui Zhou

According to the structure features of the piston, the method of combining application of finite element simulation and theoretical analysis was explored to determine the extrusion process program and the extrusion process parameters. Theoretical calculation shows that a longitudinal extrusion and a lateral extrusion can form piston. The result comparing simulative prediction with theoretical calculation demonstrates that there is a good fit between the two and the theoretical calculation is right. The result of simulative prediction demonstrates that the grain size of piston after extrusion is about 17.8 μm and the refining rate reaches 55%. The grain size on both sides of the piston skirt and piston internal floor place is about 27 μm, so the refining effect is less obvious than other parts. However, the grain refinement in the piston pin holes is more obvious, the grain is refined to 13 μm and the refining rate is about 67.5%.The result comparing simulative prediction with the experimental analysis demonstrates that there is a good fit in grain refinement between the two.

2013 ◽  
Vol 750-752 ◽  
pp. 771-775
Author(s):  
Zhi Hua Gao ◽  
Jun Xu ◽  
Guo Jun Liu ◽  
Zhi Feng Zhang ◽  
Men Gou Tang ◽  
...  

Intensive melt shearing achieved using a twin-screw machine was applied to the 7075 aluminum alloy melt to investigate its effects on grain refinement. Alloy melt without and with melt shearing was cast in the standard test procedure mould, and the effects of casting temperature, shearing time and shearing intensity on microstructures were analyzed. The results show that the intensive melt shearing exhibits superior grain refinement and remarkable structure homogeneity. Without shearing, the grain size increases significantly with the increase in pouring temperature, while with intensive melt shearing the grain size is finer at all the pouring temperatures tested with a reduced grain size dependence on the pouring temperature. With the shearing time or shearing intensity increasing, the grain size of the equiaxed primary α (Al) phase decreases on the sample microstructures, and the grain distributions trend to become more fine and non-dendritical.


Author(s):  
H Jafarzadeh ◽  
K Abrinia

The microstructure evolution during recently developed severe plastic deformation method named repetitive tube expansion and shrinking of commercially pure AA1050 aluminum tubes has been studied in this paper. The behavior of the material under repetitive tube expansion and shrinking including grain size and dislocation density was simulated using the finite element method. The continuous dynamic recrystallization of AA1050 during severe plastic deformation was considered as the main grain refinement mechanism in micromechanical constitutive model. Also, the flow stress of material in macroscopic scale is related to microstructure quantities. This is in contrast to the previous approaches in finite element method simulations of severe plastic deformation methods where the microstructure parameters such as grain size were not considered at all. The grain size and dislocation density data were obtained during the simulation of the first and second half-cycles of repetitive tube expansion and shrinking, and good agreement with experimental data was observed. The finite element method simulated grain refinement behavior is consistent with the experimentally obtained results, where the rapid decrease of the grain size occurred during the first half-cycle and slowed down from the second half-cycle onwards. Calculations indicated a uniform distribution of grain size and dislocation density along the tube length but a non-uniform distribution along the tube thickness. The distribution characteristics of grain size, dislocation density, hardness, and effective plastic strain were consistent with each other.


Author(s):  
Arash Khajeh ◽  
Ramin Ebrahimi ◽  
Mohammad Mohsen Moshksar

This study focuses on the finite element analysis of the formation of corner cavity defect during the Backward Cup Extrusion (BCE) process. In the final stage of this process, when the bottom thickness reaches to a critical value this defect will be appear as a circumferential defect in the corner of the cup. In addition, this research examines the temporal prediction of onset of corner cavity formation in the various amounts of the reduction of areas. The finite element simulation results were compared with those of the experimental, indicating that the amount of the reduction of area and that of the friction coefficient have considerable impact on the onset of corner cavity formation during the BCE process.


Author(s):  
L. M. Gurevich ◽  
V. F. Danenko ◽  
V. Abo-Shakra

The finite element simulation of tensile deformation of titanium-aluminum composite D20 - AD1 - VT6S was carried out. The composite had a wave profile of the welded joint at the boundaries D20 - AD1 and AD1 -VT6S. The thickness of the AD1 interlayer was varied in the simulation from 0.25 to 4 mm. The relative thickness of the interlayer corresponding to the onset of active deformation of the aluminum alloy has been determined.


2021 ◽  
Vol 1035 ◽  
pp. 102-107
Author(s):  
Shao Ming Ma ◽  
Chuan Liu Wang ◽  
Yun Lin Fan

Light-weight and high-strength aluminum alloy drill pipes are potential and promising to replace traditional steel drill pipes. In this study, the grain size and mechanical properties of aluminum alloy drilling pipe materials reinforced by in-situ TiB2 particles were studied. The results showed when reinforced by in-situ TiB2 particles the grain size of aluminum alloy materials was refined from 155 m to 57 m and ultimate tensile strength was increased from 590 MPa to 720 MPa. Besides, the results also indicated that the friction coefficient was reduced from 0.99 to 0.50 and thus the abrasion resistance of 7075 aluminum alloy was enhanced by 34 %. This study provided theoretical basis for the application of light-weight and high-strength aluminum alloy drill pipes in directional drilling and ultra-deep wells.


Sign in / Sign up

Export Citation Format

Share Document