Investigation of Corner Cavity Formation During Backward Cup Extrusion Process Using Finite Element Method

Author(s):  
Arash Khajeh ◽  
Ramin Ebrahimi ◽  
Mohammad Mohsen Moshksar

This study focuses on the finite element analysis of the formation of corner cavity defect during the Backward Cup Extrusion (BCE) process. In the final stage of this process, when the bottom thickness reaches to a critical value this defect will be appear as a circumferential defect in the corner of the cup. In addition, this research examines the temporal prediction of onset of corner cavity formation in the various amounts of the reduction of areas. The finite element simulation results were compared with those of the experimental, indicating that the amount of the reduction of area and that of the friction coefficient have considerable impact on the onset of corner cavity formation during the BCE process.

Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 647
Author(s):  
Bo Pang ◽  
Zhongqiu Ji ◽  
Zihua Zhang ◽  
Yunchuan Sun ◽  
Chunmin Ma ◽  
...  

Deep squat, bench press and hard pull are important ways for people to improve their strength. The use of sensors to measure force is rare. Measuring strength with sensors is extremely valuable for people to master the intensity of exercise to scientifically effective exercise. To this end, in this paper, we used a real-time wireless motion capture and mechanical evaluation system of the wearable sensor to measure the dynamic characteristics of 30 young men performing deep squat, bench press and hard pull maneuvers. The data of tibia were simulated with AnyBody 5.2 and ANSYS 19.2 to verify the authenticity. The result demonstrated that the appropriate force of the deep squat elbow joint, the hip joint and the knee joint is 40% 1RM, the appropriate force of the bench press is 40% 1RM and the appropriate force of the hard pull is 80% 1RM. The external force is the main factor of bone change. The mechanical characteristics of knee joint can be simulated after the Finite Element Analysis and the simulation of AnyBody model are verified.


2013 ◽  
Vol 652-654 ◽  
pp. 1966-1970
Author(s):  
Zhi Ren Han ◽  
Ze Bing Yuan

This paper is focus on two-Pass Deep Drawing Forming of conical axisymmetric parts, study on the finite element simulation and test of multi-Pass deep drawing part. It carry on the finite element analysis and calculation using the ANSYS/LS-DYNA software platform, analyzing the simulation results such as stress , strain distribution and formability by post-processing LSPOST software. It was done multi-Pass deep drawing test using a set of combined type mould. Based on the multi-Pass forming test by using a set of combined type mould, comparison of simulation and test data can be obtained through the forming limit diagram. The result of simulation and test is basically the same and both reflect the formability.


2014 ◽  
Vol 875-877 ◽  
pp. 2078-2086
Author(s):  
Long Tao Liu ◽  
Chuan Ri Li ◽  
Shuang Long Rong ◽  
You Gang Jin

In order to analyze the fatigue of the airborne product structure, the modal analysis and random vibration analysis are conducted for the product by using the finite element analysis software ANSYS. The modal analyzing results are compared with the modal test results and the finite element model is corrected. The stress response power spectral density is obtained from random vibration analyzing. A frequency domain method for calculating the fatigue damage of the structure is presented. The simulation results are in agreement with the reliability enhancement testing results. An optimization scheme for the product structure design is given.


2005 ◽  
Vol 14 (4) ◽  
pp. 096369350501400
Author(s):  
G. Albertini ◽  
E. Girardin ◽  
A. Giuliani ◽  
D.E. Ilie ◽  
B.P. O'Donnell ◽  
...  

The introduction of reinforcement in a Metal Matrix causes micro-stresses which may prove to be very detrimental for the life of the component. Submitting the components to annealing thermal treatments introduces thermal mismatch stresses. They are generated during cooling due to the difference between the thermal expansion coefficient of the two phases. Finite Element Analysis has been performed to study this effect and the results have been experimentally validated by X-ray diffraction, SEM investigation and EDAX on an AA2009 + 25% SiCp extruded shaft for helicopters, simplified as a thin extruded tube.


Author(s):  
Jia Gao ◽  
Seungbae Park ◽  
James Pitarresi ◽  
Dorel Homentcovschi

There has been an increasing interest in the applications of thin membrane in space application, flexible electronic display, manufacturing of glass displays and growth of film on materials at elevated temperatures. Because of the negligible bending stiffness of thin membranes, membranes are lack of resistance to compressive stress. For the applications at high temperatures, the thermal expansion coefficient mismatch between membrane and substrate materials may generate compressive stress that causes the membrane buckling. The study of thermal buckling of isotropic elastic plate in the context of the large - deflection theory was the subject of a series of papers[1-5]. However, it has been noted that none of these papers has considered the second buckling of the membrane resulting in membrane wrinkling. The presence of wrinkles may significantly change deflection and stress profile of membranes. So, it is important to develop an effective analysis method to investigate the wrinkle formation and evolution in membrane subjected the elevated temperature. This paper presents the experiment work to investigate wrinkle formation and evolution in membranes heated from room temperature up to 170 °C. The specimens consist of polymer and metal membranes with steel and silicon substrate respectively. A wide range of membrane shapes and aspect ratios are considered in this work. An experiment set up is developed to study the deflection profiles of membranes at discrete temperatures. The information gained from this experiment work is used to validate numerical modeling results. The Finite Element Analysis results using nonlinear post-buckling analysis are also included in this paper. The nonlinear post-buckling analysis provides a good understanding of the mechanism of wrinkle generation and evolution as temperature increased. It is shown that the first buckling of membrane significantly reduces bending stiffness thus to create localized buckling modes accounting for the wrinkle generation. The wrinkle pattern is stable until the temperature reaches the next critical value. After this critical temperature, the wrinkle pattern is changed until temperature reaches the next critical value. The new wrinkle pattern is keeping evolved until the final temperature is reached. The finite element analysis results are in good agreement with experimental observations.


Author(s):  
Fanshun Meng ◽  
Rui Deng ◽  
Dawei Wang ◽  
Yanming Huang ◽  
Liyan Wang

The marine riser bears various power loads during operation. We designed the Quadrupole-type magnetic measurement probe based on the inverse magnetostrictive effect (the impact of stress on the magnetization) and performed finite element simulation and experimental analysis. The results of both the finite element analysis and magnetic measurement basically follow the same trend, so we conclude that this four-pole magnetic probe measurement can quantitatively evaluate the force state in a marine riser.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Bao Zhu ◽  
Huan Feng

This paper does some research and discussion on the finite element analysis of a building structure, especially the computer graphics simulation method in building structure simulation. Moreover, with the support of BIM technology and computer finite element simulation technology, this paper constructs a building structure simulation system and analyzes the building structure simulation system based on actual conditions such as building structure and stress load. In addition, this paper improves the traditional structural analysis algorithm and designs experiments to evaluate the effect of the method proposed in this paper and analyze the data in the form of simulation to compare the validity of the test results. Finally, an experiment is designed to evaluate the data processing capability of the test system in this paper. The experimental analysis results verify the effectiveness of the method in this paper, which can provide relevant theoretical references for subsequent building structure simulation.


2014 ◽  
Vol 1033-1034 ◽  
pp. 462-465
Author(s):  
Yong Huang ◽  
De Jun Ma ◽  
W. Chen ◽  
Jia Liang Wang ◽  
Liang Sun

Based on the finite element analysis method to simulate the O-P hardness. Taking S45C steel as an example, comparative analysis of O-P hardness of finite element simulation and O-P hardness of instrument indentation hardness experiment, results show that difference of S45C steel’s O-P hardness between the finite element simulation and real experiment is-2.62% Accordingly seen, O-P hardness can be obtained by finite element numerical simulation method, it’s a possible way to study relations between O-P hardness and Vickers hardness based on finite element numerical simulation techniques.


2014 ◽  
Vol 622-623 ◽  
pp. 632-642
Author(s):  
Stephen Akinlabi ◽  
Francesco Pietra ◽  
Esther Titilayo Akinlabi

Forming is a manufacturing process by which the geometrical shape and size of sheet and plate metals are changed by means of either an external force using mechanical presses and dies or induced thermal stresses by external heat. This study reports on the finite element analysis of mechanically formed steel components using the ANSYS commercial package version 14.5. The samples of the steel sheets were mechanically formed to about 120 mm curvatures using a 20 ton capacity eccentric mechanical press at room temperature. The results showed that the steel samples were successfully formed to the curvature of about 120 mm and the finite element modelled results confirmed the experimental measured curvature. Key words: Forming, Mechanical presses, Finite Element Simulation and Sheets.


2011 ◽  
Vol 105-107 ◽  
pp. 444-447 ◽  
Author(s):  
Zhong Jun Yin ◽  
Lei Zhang ◽  
Bing Chen

The virtual prototype model of the coal screen is established with Pro/E and RecurDyn based on virtual prototype technology. The kinematic characteristics of different points are obtained by simulation. At the same time, the finite element analysis model of a screen box is established with ANSYS. Modal analysis and harmonic analysis have been carried out based on dynamic analysis technology. According to the results of dynamic finite element simulation, some corresponding improvements were made for the structure of screen box, which makes the stress concentration region of screen box decreased and more uniform stress distribution to meet the design requirements.


Sign in / Sign up

Export Citation Format

Share Document