A Heuristic Link Selection for Radio Frequency Tomography Based on BCS: Principle and Method

2014 ◽  
Vol 1049-1050 ◽  
pp. 520-525
Author(s):  
Xiao Xi Hao ◽  
Xue Mei Guo ◽  
Guo Li Wang

Radio tomographic imaging as a coarse computational imaging method has attracted much attentions due to its potential applications in human surveillance. It utilizes the shadow fading characteristics of radio signals among wireless sensor network nodes to infer the targets' localization. The recovery process involves a large number of scanning links, which brings heavy burdens on node energy, communication routes and data storage. In general, there is a small number of targets and could be seen as a sparse signal compared with the original high-dimensional space. Hence, the key of scene recovery is the effective links selected. This part of work presents a heuristic link selection for radio tomographic localization system, which introduces a Bayesian compressive sensing (BCS) to heuristic link selection method for scene imaging reconstruction.

2014 ◽  
Vol 1049-1050 ◽  
pp. 526-529
Author(s):  
Xiao Xi Hao ◽  
Xue Mei Guo ◽  
Guo Li Wang

Radio tomographic imaging as a coarse computational imaging method has attracted much attentions due to its potential applications in human surveillance. It utilizes the shadow fading characteristics of radio signals among wireless sensor network nodes to infer the targets' localization. The recovery process involves a large number of scanning links, which brings heavy burdens on node energy, communication routes and data storage. In general, there is a small number of targets and could be seen as a sparse signal compared with the original high-dimensional space. Hence, the key of scene recovery is the effective links selected. As the continuation of the previous part of work, this part of paper presents experimental studies indicate the proposed method is able to obtain better accuracy under the same number of measurements compared with the existed method. Numerical applications of proposed model are illustrated as well.


Author(s):  
Umesh Banodha ◽  
Praveen Kumar Kataria

Cloud is an emerging technology that stores the necessary data and electronic form of data is produced in gigantic quantity. It is vital to maintain the efficacy of this data the need of data recovery services is highly essential. Cloud computing is anticipated as the vital foundation for the creation of IT enterprise and it is an impeccable solution to move databases and application software to big data centers where managing data and services is not completely reliable. Our focus will be on the cloud data storage security which is a vital feature when it comes to giving quality service. It should also be noted that cloud environment comprises of extremely dynamic and heterogeneous environment and because of high scale physical data and resources, the failure of data centre nodes is completely normal.Therefore, cloud environment needs effective adaptive management of data replication to handle the indispensable characteristic of the cloud environment. Disaster recovery using cloud resources is an attractive approach and data replication strategy which attentively helps to choose the data files for replication and the strategy proposed tells dynamically about the number of replicas and effective data nodes for replication. Thus, the objective of future algorithm is useful to help users together the information from a remote location where network connectivity is absent and secondly to recover files in case it gets deleted or wrecked because of any reason. Even, time oriented problems are getting resolved so in less time recovery process is executed.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4011
Author(s):  
Chuanwei Yao ◽  
Yibing Shen

The image deconvolution technique can recover potential sharp images from blurred images affected by aberrations. Obtaining the point spread function (PSF) of the imaging system accurately is a prerequisite for robust deconvolution. In this paper, a computational imaging method based on wavefront coding is proposed to reconstruct the wavefront aberration of a photographic system. Firstly, a group of images affected by local aberration is obtained by applying wavefront coding on the optical system’s spectral plane. Then, the PSF is recovered accurately by pupil function synthesis, and finally, the aberration-affected images are recovered by image deconvolution. After aberration correction, the image’s coefficient of variation and mean relative deviation are improved by 60% and 30%, respectively, and the image can reach the limit of resolution of the sensor, as proved by the resolution test board. Meanwhile, the method’s robust anti-noise capability is confirmed through simulation experiments. Through the conversion of the complexity of optical design to a post-processing algorithm, this method offers an economical and efficient strategy for obtaining high-resolution and high-quality images using a simple large-field lens.


2019 ◽  
Author(s):  
Peter Evans ◽  
Daniel Reta ◽  
George F. S. Whitehead ◽  
Nicholas Chilton ◽  
David Mills

Single-molecule magnets (SMMs) have potential applications in high-density data storage, but magnetic relaxation times at elevated temperatures must be increased to make them practically useful. <i>Bis</i>-cyclopentadienyl lanthanide sandwich complexes have emerged as the leading candidates for SMMs that show magnetic memory at liquid nitrogen temperatures, but the relaxation mechanisms mediated by aromatic C<sub>5</sub> rings have not been fully established. Here we synthesise a <i>bis</i>-monophospholyl dysprosium SMM [Dy(Dtp)<sub>2</sub>][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>] (<b>1</b>, Dtp = {P(C<sup>t</sup>BuCMe)<sub>2</sub>}) by the treatment of <i>in situ</i>-prepared “[Dy(Dtp)<sub>2</sub>(C<sub>3</sub>H<sub>5</sub>)]” with [HNEt<sub>3</sub>][Al{OC(CF<sub>3</sub>)<sub>3</sub>}<sub>4</sub>]. SQUID magnetometry reveals that <b>1</b> has an effective barrier to magnetisation reversal of 1,760 K (1,223 cm<sup>–1</sup>) and magnetic hysteresis up to 48 K. <i>Ab initio</i> calculation of the spin dynamics reveal that transitions out of the ground state are slower in <b>1</b> than in the first reported dysprosocenium SMM, [Dy(Cp<sup>ttt</sup>)<sub>2</sub>][B(C<sub>6</sub>F<sub>5</sub>)<sub>4</sub>] (Cp<sup>ttt</sup> = C<sub>5</sub>H<sub>2</sub><sup>t</sup>Bu<sub>3</sub>-1,2,4), however relaxation is faster in <b>1</b> overall due to the compression of electronic energies and to vibrational modes being brought on-resonance by the chemical and structural changes introduced by the <i>bis</i>-Dtp framework. With the preparation and analysis of <b>1</b> we are thus able to further refine our understanding of relaxation processes operating in <i>bis</i>-C<sub>5</sub>/C<sub>4</sub>P sandwich lanthanide SMMs, which is the necessary first step towards rationally achieving higher magnetic blocking temperatures in these systems in future.


Author(s):  
Abraham Pouliakis ◽  
Niki Margari ◽  
Effrosyni Karakitsou ◽  
Stavros Archondakis ◽  
Petros Karakitsos

Cytopathology became a popular since George Papanicolaou proposed the famous test Pap 60 years ago. Today cytopathology laboratories use the microscope as primary diagnostic device; however modern laboratories host numerous modalities for molecular tests and exchange data via networks; additionally, there are imaging systems producing pictures and virtual slides at enormous sizes and volume. The latest technological developments for cloud computing, big data and mobile devices has changed the way enterprises, institutions and people use computerized systems. In this chapter are explored potential applications of these technologies in the cytopathology laboratory including: data storage, laboratory information systems, population screening programs, quality control and assurance, education and proficiency testing, e-learning, tele-consultation, primary diagnosis and research. The impact of their adoption on the daily workflow is highlighted, possible shortcomings especially for security and privacy issues are identified and future research directions are presented.


2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cai-Wei Yang ◽  
Xi-Jiao Liu ◽  
Si-Yun Liu ◽  
Shang Wan ◽  
Zheng Ye ◽  
...  

The most common mesenchymal tumors are gastrointestinal stromal tumors (GISTs), which have malignant potential and can occur anywhere along the gastrointestinal system. Imaging methods are important and indispensable of GISTs in diagnosis, risk staging, therapy, and follow-up. The recommended imaging method for staging and follow-up is computed tomography (CT) according to current guidelines. Artificial intelligence (AI) applies and elaborates theses, procedures, modes, and utilization systems for simulating, enlarging, and stretching the intellectual capacity of humans. Recently, researchers have done a few studies to explore AI applications in GIST imaging. This article reviews the present AI studies in GISTs imaging, including preoperative diagnosis, risk stratification and prediction of prognosis, gene mutation, and targeted therapy response.


Author(s):  
Wei Zhang ◽  
Longlong Wang ◽  
Ke Liu ◽  
Xiaofeng Wei ◽  
Kai Yang ◽  
...  

Abstract Motivation T and B cell receptors (TCRs and BCRs) play a pivotal role in the adaptive immune system by recognizing an enormous variety of external and internal antigens. Understanding these receptors is critical for exploring the process of immunoreaction and exploiting potential applications in immunotherapy and antibody drug design. Although a large number of samples have had their TCR and BCR repertoires sequenced using high-throughput sequencing in recent years, very few databases have been constructed to store these kinds of data. To resolve this issue, we developed a database. Results We developed a database, the Pan Immune Repertoire Database (PIRD), located in China National GeneBank (CNGBdb), to collect and store annotated TCR and BCR sequencing data, including from Homo sapiens and other species. In addition to data storage, PIRD also provides functions of data visualization and interactive online analysis. Additionally, a manually curated database of TCRs and BCRs targeting known antigens (TBAdb) was also deposited in PIRD. Availability and implementation PIRD can be freely accessed at https://db.cngb.org/pird.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5562
Author(s):  
Yueyang Zhai ◽  
Li Cao ◽  
Ying Liu ◽  
Xiaodi Tan

Polarization holography has the unique capacity to record and retrieve the amplitude, phase, and polarization of light simultaneously in a polarization-sensitive recording material and has attracted widespread attention. Polarization holography is a noteworthy technology with potential applications in the fields of high-capacity data storage, polarization-controlled optical elements, and other related fields. The choice of its high-performance materials is particularly important. To further develop polarization holography applications and improve the quality of the information recorded (i.e., material sensitivity and resolution), a deeper understanding of such materials is needed. We present an overview of the polarization-sensitive materials, which introduced polarization holographic technology and the development of polarization holographic materials. The three main types of polarization holographic materials are described, including azopolymer materials, photopolymer material, and photorefractive polymer material. We examine the key contributions of each work and present many of the suggestions that have been made to improve the different polarization-sensitive photopolymer materials.


2013 ◽  
Vol 69 (6) ◽  
pp. 592-602 ◽  
Author(s):  
Pierre-Philippe Dechant

This paper shows how regular convex 4-polytopes – the analogues of the Platonic solids in four dimensions – can be constructed from three-dimensional considerations concerning the Platonic solids alone.Viathe Cartan–Dieudonné theorem, the reflective symmetries of the Platonic solids generate rotations. In a Clifford algebra framework, the space of spinors generating such three-dimensional rotations has a natural four-dimensional Euclidean structure. The spinors arising from the Platonic solids can thus in turn be interpreted as vertices in four-dimensional space, giving a simple construction of the four-dimensional polytopes 16-cell, 24-cell, theF4root system and the 600-cell. In particular, these polytopes have `mysterious' symmetries, that are almost trivial when seen from the three-dimensional spinorial point of view. In fact, all these induced polytopes are also known to be root systems and thus generate rank-4 Coxeter groups, which can be shown to be a general property of the spinor construction. These considerations thus also apply to other root systems such as A_{1}\oplus I_{2}(n) which induces I_{2}(n)\oplus I_{2}(n), explaining the existence of the grand antiprism and the snub 24-cell, as well as their symmetries. These results are discussed in the wider mathematical context of Arnold's trinities and the McKay correspondence. These results are thus a novel link between the geometries of three and four dimensions, with interesting potential applications on both sides of the correspondence, to real three-dimensional systems with polyhedral symmetries such as (quasi)crystals and viruses, as well as four-dimensional geometries arising for instance in Grand Unified Theories and string and M-theory.


Sign in / Sign up

Export Citation Format

Share Document