The Mechanical Properties Numerical Analysis of Steel Plate of Coupling Beam

2014 ◽  
Vol 1065-1069 ◽  
pp. 1139-1142
Author(s):  
Bao Lei Li ◽  
Dong Chen ◽  
Cheng Fan ◽  
Li Song

In this paper, on the basis of specimen model size mentioned in steel reinforced concrete coupling beam stress performance research, using the ANSYS finite element software about coupling beam specimens with different steel plates for one-off monotonic loading. Through the comparative analysis of simulation results, to explore the impact of different steel plate forms on shear capacity and ductility of coupling beams, etc .

2015 ◽  
Vol 1089 ◽  
pp. 282-285
Author(s):  
Cheng Fan ◽  
Bao Lei Li ◽  
Dong Chen ◽  
Li Song

In this paper, on the basis of specimen model size mentioned in steel reinforced concrete coupling beam stress performance research, using the ANSYS finite element software about coupling beam specimens with different steel plates for one-off monotonic loading. Through the comparative analysis of simulation results, to explore the impact of different steel plate forms on concrete mechanical properties and ductility of coupling beams .


2019 ◽  
Vol 2019 ◽  
pp. 1-14
Author(s):  
Lili Wu ◽  
Lipei An ◽  
Jiawei Li

Considering that the fixed crack model by default of the general finite element software was unable to simulate the shear softening behavior of concrete in the actual situation, a rotational crack model based on the modified compression field theory developed by UMAT (user material) of ABAQUS software was proposed and applied to the nonlinear analysis, and a numerical simulated model for the steel-concrete composite slab was built for shear analysis. Experimental studies and numerical analyses were used to investigate the shear load-carrying capacity, deformation, and crack development in steel plate-concrete composite slab, as well as the effects of the shear span ratio and shear stud spacing on the shear performance and the contribution of the steel plate and the concrete to the shear performance. Shear capacity tests were conducted on three open sandwich steel plate-concrete composite slabs and one plain concrete slab without a steel plate. The results indicated that the shear-compression failure mode occurred primarily in the steel plate-concrete composite slab and that the steel plate sustained more than 50% of the total shear force. Because of the combination effect of steel plate, the actual shear force sustained by the concrete in the composite slab was 1.27 to 2.22 times greater than that of the calculated value through the Chinese Design Code for Concrete Structures (GB 50010-2010). Furthermore, the shear capacity of the specimen increases by 37% as the shear stud spacing decreases from 250 mm to 150 mm. By comparing the shear capacity, the overall process of load deformation development, and the failure mode, it was shown that the simulation results corresponded with the experimental results. Furthermore, the numerical simulation model was applied to analyze the influence of some factors on composite slab, and a formula of shear bearing capacity of slab was obtained. The results of the formula agreed with the test result, which could provide references to the design and application of steel plate-concrete composite slab.


Various numerical models of diagonally stiffened steel plate shear wall were tested under push-over loads to study the required stiffness of columns of diagonally stiffened SPSWs. This research presents a parametric study to explore the influence of varying the infill panel’s thickness, width, and height and the number of floors on the stiffness of the edge columns, and to propose expressions to predict the column’s in-plane stiffness and area required for preliminary design. Different SPSWs were modeled with a range of several stories, an aspect ratio, and height to thickness ratio, respectively, of (n=3-7), (Lp /hp=1-2), and (λ=200-400). The results indicated that the number of floors (n) has a great effect on the wall’s shear capacity. A greater number of floors lead to buckling in columns and early failure of the system, and subsequently, an increase in the column’s rigidity is required. Moreover, an equation is proposed to calculate the value of ωh required for sufficient inertia of the column. Higher the drift is, lower the shear capacity of the wall is, particularly for walls with a larger aspect ratio (Lp /hp > 1.5), and smaller height to thickness ratio (λ < 400). It is proposed that the columns’ out-of-plane stiffness divided by its in-plane stiffness to be equal or greater than 0.4. An equation is also proposed to predict the required columns’ rx substantial to assure that the columns can resist the impact of the tension field and the plate achieves full yield strength.


2019 ◽  
Vol 46 (8) ◽  
pp. 742-758
Author(s):  
Tarek S. Sabra ◽  
Hatem Hassan Ibrahim

The shear friction capacity calculated using clauses 11.6.4 to 11.6.10 in ACI 318-14 or clauses 11.5.1 to 11.5.6 in CSA-A23.3-14 do not take into consideration the effect of edge distance on the shear friction capacity. The main objectives of this research are to study the effect of edge distance on the shear friction capacity by means of a specifically designed experimental program, to determine the minimum edge distance to develop the shear friction capacity, and to derive an expression for reduction of shear friction capacity for edge distances less than the minimum edge distance. The study involved testing eight specimens. In four specimens, a steel plate was anchored using welded reinforcing steel bars, and in the other four specimens the steel plate was anchored using headed concrete anchors (bolts) (HCA). The steel plates were tested under shear load at edge distances of 75, 150, 225, and 300 mm (3.0, 6.0, 9.0, and 12.0 in), for the two types of anchorage. The results were compared to design values according to ACI 318-14 and CAN/CSA-A23.3-14 standards. An equation is derived to compute the minimum edge distance after which the full shear friction capacity is developed. Another equation is derived to compute the proposed shear capacity for reinforcing bar anchors for edge distances less than the minimum edge distance.


2016 ◽  
Vol 118 ◽  
pp. 76-90 ◽  
Author(s):  
Hong-Song Hu ◽  
Jian-Guo Nie ◽  
Yu-Hang Wang

2018 ◽  
Vol 10 (2) ◽  
pp. 174-197 ◽  
Author(s):  
Senthil Kasilingam ◽  
Mohd Ashraf Iqbal ◽  
Rupali Senthil

This study is based on the finite element investigation of the response of mild steel and Armox 500 T steel targets subjected to macro- and micro-size impactor. The simulations were carried out on target against penetrator with varying masses, sizes, shapes and different nature (rigid and deformable projectiles) using ABAQUS/Explicit. The material parameters of Johnson–Cook elasto-viscoplastic model were employed for predicting the behaviour of the target. The impact resistance of mild steel and Armox 500 T steel plates has been studied against flat nose having masses of 4, 8, 13.5, 27, 32 and 64 kg. The influence of temperature has also been studied numerically for particular penetrator. To study the influence of nature of projectile, the simulations were performed on mild steel and Armox 500 T steel targets against deformable 2024 aluminium flat, hardened steel flat and hardened steel conical impactors at 950 and 150 m/s incidence velocities. Also, the simulations were carried out on given target against 7.62 and 12.7 mm armour piercing incendiary ogival nose projectiles. The performance of (4.7 + 4.7 mm) 9.4-mm-thick equivalent mild steel and Armox 500 T steel plate in combination has also been studied against 7.62 armour piercing incendiary ogival nose projectiles at 950 and 150 m/s incidence velocities. The study thus presents a detailed investigation in terms of penetration, perforation and failure mechanism of mild steel and Armox 500 T steel target and leads to some important conclusions pertaining to the force and resistance offered by the target.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
W. Y. Lam ◽  
Lingzhi Li ◽  
R. K. L. Su ◽  
H. J. Pam

As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors’ previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa.


2014 ◽  
Vol 501-504 ◽  
pp. 341-345
Author(s):  
Shu Feng Wang

In recent years, micro-pile has been widely applied to landslide treatment engineering due to its advantages in application and construction, with quite evident engineering effect. Different geological experts have focused on sundry research direction on its resistance mechanism. Based on results from numerical simulation, shearing forces of micro-pile in landslide treatment engineering with and without coupling beams were analyzed, all of which are hoped to reveal the impact of coupling beams between the top of the piles on shearing force of micro-pile group in landslide. Results from contradistinction showed that coupling beam played greater role with shearing force to segment piles, comparing with less to the force near the sliding surface. Without coupling beams, shearing force of each pile from each row suffered quite different, comparing to that of small differences with beams. With no coupling beams, first damage points were located under top of the piles at about six times the pile diameter.


2011 ◽  
Vol 108 ◽  
pp. 35-40 ◽  
Author(s):  
A. Vatani Oskouei ◽  
F. Kiakojouri

In this study, for behavior of steel plate which subjected to uniform blast loading the general purpose finite element software ABAQUS, was used. The aim of this paper is to recognize the effect of stiffener configurations, boundary conditions, mesh dependency, load patterns, geometry of plates and damping on dynamic response of the plates. Special emphasis is focused on the evolution of mid-point displacements. The results show that stiffener configuration and boundary conditions have a significant influence on the response, while the effects of damping and load pattern on maximum response are negligible. The results obtained allow an insight into the effect of stiffener configurations and other parameters on the response of the plates under uniform blast loading.


Sign in / Sign up

Export Citation Format

Share Document