scholarly journals Behaviour of Plate Anchorage in Plate-Reinforced Composite Coupling Beams

2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
W. Y. Lam ◽  
Lingzhi Li ◽  
R. K. L. Su ◽  
H. J. Pam

As a new alternative design, plate-reinforced composite (PRC) coupling beam achieves enhanced strength and ductility by embedding a vertical steel plate into a conventionally reinforced concrete (RC) coupling beam. Based on a nonlinear finite element model developed in the authors’ previous study, a parametric study presented in this paper has been carried out to investigate the influence of several key parameters on the overall performance of PRC coupling beams. The effects of steel plate geometry, span-to-depth ratio of beams, and steel reinforcement ratios at beam spans and in wall regions are quantified. It is found that the anchorage length of the steel plate is primarily controlled by the span-to-depth ratio of the beam. Based on the numerical results, a design curve is proposed for determining the anchorage length of the steel plate. The load-carrying capacity of short PRC coupling beams with high steel ratio is found to be controlled by the steel ratio of wall piers. The maximum shear stress of PRC coupling beams should be limited to 15 MPa.

2011 ◽  
Vol 368-373 ◽  
pp. 795-802
Author(s):  
Zhuo Ya Yuan ◽  
Xiong Wei Shi ◽  
Wei Feng ◽  
Liang Liang Ke ◽  
Li Chen

In this paper, a formulation for calculating ultimate bending capacity was created. A nonlinear finite element model was established using ANSYS with right material parameters for prestressed concrete box girder with steel plate and concrete composite strengthening (SPCCS).A comparison was made between analysis results and function formula data, and results show that the numerical result s of nonlinear static analysis are in good agreement with the formula results. Effect of SPCCS and steel plate strengthening was compared, and the results show that SPCCS does more effective.


2014 ◽  
Vol 1065-1069 ◽  
pp. 1139-1142
Author(s):  
Bao Lei Li ◽  
Dong Chen ◽  
Cheng Fan ◽  
Li Song

In this paper, on the basis of specimen model size mentioned in steel reinforced concrete coupling beam stress performance research, using the ANSYS finite element software about coupling beam specimens with different steel plates for one-off monotonic loading. Through the comparative analysis of simulation results, to explore the impact of different steel plate forms on shear capacity and ductility of coupling beams, etc .


2021 ◽  
Vol 920 (1) ◽  
pp. 012033
Author(s):  
M F M Fisol ◽  
R A Samat ◽  
S A Bakar

Abstract Shear Plate Shear Wall (SPSW) is a lateral force resisting system that is usually used in high seismic regions. Opening can be accommodated by using coupled steel plate shear wall (CSPSW) where two or more SPSWs are placed adjacently and are connected by coupling beams. Maximum displacement, shear load capacity and energy dissipation are affected by the dimension of the coupling beams. The construction cost of the building can be reduced vastly by optimizing the size of the coupling beams where the capability of CSPSW to resist the earthquake is maximized. Thus, the objective of this study is to determine the behaviour of maximum displacement, shear load capacity and energy dissipation of the CSPSW when the width, depth and length of the coupling beams are varied. Fourteen CSPSW models were analysed by ABAQUS software, where the models were subjected to lateral cyclic loading as accordance to ATC24. Maximum displacement of the CSPSW was not affected by the dimensions of the coupling beams. Shear load capacity was increased as either the width or the depth of the coupling beam was increased, and achieved its maximum value when the length of the coupling beam was 1000 mm. The optimum width, depth and length of the coupling beam to maximize the energy dissipation of the CSPSW models were 200 mm, 1000 mm and 1000 mm, respectively.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 626
Author(s):  
Riccardo Scazzosi ◽  
Marco Giglio ◽  
Andrea Manes

In the case of protection of transportation systems, the optimization of the shield is of practical interest to reduce the weight of such components and thus increase the payload or reduce the fuel consumption. As far as metal shields are concerned, some investigations based on numerical simulations showed that a multi-layered configuration made of layers of different metals could be a promising solution to reduce the weight of the shield. However, only a few experimental studies on this subject are available. The aim of this study is therefore to discuss whether or not a monolithic shield can be substituted by a double-layered configuration manufactured from two different metals and if such a configuration can guarantee the same perforation resistance at a lower weight. In order to answer this question, the performance of a ballistic shield constituted of a layer of high-strength steel and a layer of an aluminum alloy impacted by an armor piercing projectile was investigated in experimental tests. Furthermore, an axisymmetric finite element model was developed. The effect of the strain rate hardening parameter C and the thermal softening parameter m of the Johnson–Cook constitutive model was investigated. The numerical model was used to understand the perforation process and the energy dissipation mechanism inside the target. It was found that if the high-strength steel plate is used as a front layer, the specific ballistic energy increases by 54% with respect to the monolithic high-strength steel plate. On the other hand, the specific ballistic energy decreases if the aluminum plate is used as the front layer.


Author(s):  
Jaychandar Muthu ◽  
Kanak Soundrapandian ◽  
Jyoti Mukherjee

For suspension components, bench testing for strength is mostly accomplished at component level. However, replicating loading and boundary conditions at the component level in order to simulate the suspension system environment may be difficult. Because of this, the component's bench test failure mode may not be similar to its real life failure mode in vehicle environment. A suspension system level bench test eliminates most of the discrepancies between simulated component level and real life vehicle level environments resulting in higher quality bench tests yielding realistic test results. Here, a suspension level bench test to estimate the strength of its trailing arm link is presented. A suspension system level nonlinear finite element model was built and analyzed using ABAQUS software. The strength loading was applied at the wheel end. The analysis results along with the hardware test correlations are presented. The reasons why a system level test is superior to a component level one are also highlighted.


Author(s):  
Guomin Ji ◽  
Bernt J. Leira ◽  
Svein Sævik ◽  
Frank Klæbo ◽  
Gunnar Axelsson ◽  
...  

This paper presents results from a case study performed to evaluate the residual capacity of a 6″ flexible pipe when exposed to corrosion damages in the tensile armour. A three-dimensional nonlinear finite element model was developed using the computer code MARC to evaluate the increase in mean and dynamic stresses for a given number of damaged inner tensile armor wires. The study also includes the effect of these damages with respect to the associated stresses in the pressure spiral. Furthermore, the implications of a sequence of wire failures with respect to the accumulated time until cross-section failure in a probabilistic sense are addressed.


Sign in / Sign up

Export Citation Format

Share Document