What are the Driving Factors behind the Fluctuation of Crude Oil Prices? : An Independent Component Analysis

2014 ◽  
Vol 1073-1076 ◽  
pp. 2508-2511
Author(s):  
Hui Ping Li ◽  
Li Wei Fan ◽  
Peng Zhou

This study adopted independent component analysis (ICA) to explore the underlying driving factors affect the international crude oil prices. Three original benchmark crude oil spot prices were first preprocessed to become normalized form by centering and whitening. Three independent components were then estimated by Fast-ICA algorithm. We find that the three independent components vary differently in their fluctuation amplitude and indicate clearly different hidden factors consisting of dominant long-term trend, medium-term extreme events influence, as well as frequent short-term irregular events such as weather and speculation. It shows that ICA is a powerful tool in finding out common hidden driving factors of international parallel crude oil prices.

2016 ◽  
Vol 37 (1) ◽  
Author(s):  
Klaus Nordhausen ◽  
Hannu Oja ◽  
Esa Ollila

Oja, Sirkiä, and Eriksson (2006) and Ollila, Oja, and Koivunen (2007) showed that, under general assumptions, any two scatter matrices with the so called independent components property can be used to estimate the unmixing matrix for the independent component analysis (ICA). The method is a generalization of Cardoso’s (Cardoso, 1989) FOBI estimate which uses the regular covariance matrix and a scatter matrix based on fourth moments. Different choices of the two scatter matrices are compared in a simulation study. Based on the study, we recommend always the use of two robust scatter matrices. For possible asymmetric independent components, symmetrized versions of the scatter matrix estimates should be used.


2019 ◽  
Vol 11 (5) ◽  
pp. 1359
Author(s):  
Xianfang Su ◽  
Huiming Zhu ◽  
Xinxia Yang

The causal relationships between spot and futures crude oil prices have attracted the attention of many researchers in the past several decades. Most of the studies, however, do not distinguish among the various oil market situations in analyses of linear and nonlinear causalities. In light of the fact that a booming or depressing oil market produces heterogeneous investment behaviors, this study applied a quantile causality framework to capture different causalities across various quantile levels and found that the causal relationships between crude oil spot and futures prices significantly derive from tail quantile intervals and appear as heterogeneous effects. Before the Iraq War, crude oil spot and futures prices were mutually Granger-caused at lower quantile levels, and only futures prices led spot prices at upper quantile levels. Since the war, a clear bidirectional causality has existed at the upper quantile levels, but only in lower quantile levels have futures prices led spot prices. These results provide useful information to investors using crude spot or futures prices to hedge or manage downside or upside risks in their portfolios.


2019 ◽  
Vol 7 (3) ◽  
pp. SE19-SE42 ◽  
Author(s):  
David Lubo-Robles ◽  
Kurt J. Marfurt

During the past two decades, the number of volumetric seismic attributes has increased to the point at which interpreters are overwhelmed and cannot analyze all of the information that is available. Principal component analysis (PCA) is one of the best-known multivariate analysis techniques that decompose the input data into second-order statistics by maximizing the variance, thus obtaining mathematically uncorrelated components. Unfortunately, projecting the information in the multiple input data volumes onto an orthogonal basis often mixes rather than separates geologic features of interest. To address this issue, we have implemented and evaluated a relatively new unsupervised multiattribute analysis technique called independent component analysis (ICA), which is based on higher order statistics. We evaluate our algorithm to study the internal architecture of turbiditic channel complexes present in the Moki A sands Formation, Taranaki Basin, New Zealand. We input 12 spectral magnitude components ranging from 25 to 80 Hz into the ICA algorithm and we plot 3 of the resulting independent components against a red-green-blue color scheme to generate a single volume in which the colored independent components correspond to different seismic facies. The results obtained using ICA proved to be superior to those obtained using PCA. Specifically, ICA provides improved resolution and separates geologic features from noise. Moreover, with ICA, we can geologically analyze the different seismic facies and relate them to sand- and mud-prone seismic facies associated with axial and off-axis deposition and cut-and-fill architectures.


1996 ◽  
Vol 07 (06) ◽  
pp. 671-687 ◽  
Author(s):  
AAPO HYVÄRINEN ◽  
ERKKI OJA

Recently, several neural algorithms have been introduced for Independent Component Analysis. Here we approach the problem from the point of view of a single neuron. First, simple Hebbian-like learning rules are introduced for estimating one of the independent components from sphered data. Some of the learning rules can be used to estimate an independent component which has a negative kurtosis, and the others estimate a component of positive kurtosis. Next, a two-unit system is introduced to estimate an independent component of any kurtosis. The results are then generalized to estimate independent components from non-sphered (raw) mixtures. To separate several independent components, a system of several neurons with linear negative feedback is used. The convergence of the learning rules is rigorously proven without any unnecessary hypotheses on the distributions of the independent components.


2014 ◽  
Vol 6 (12) ◽  
pp. 4305-4311 ◽  
Author(s):  
Jiguang Li ◽  
Jun Gao ◽  
Hua Li ◽  
Xiaofeng Yang ◽  
Yu Liu

The synthesis mechanism of 4-amino-3,5-dimethyl pyrazole was investigated using in-line FT-IR spectroscopy combined with a Fast-ICA algorithm.


2014 ◽  
Vol 664 ◽  
pp. 148-152
Author(s):  
Shuang Xi Jing ◽  
Song Tao Guo ◽  
Jun Fa Leng ◽  
Xing Yu Zhao

Constrained independent component analysis (cICA) is a new theory and new method derived from the independent component analysis (ICA).It can extract the desired independent components (ICs) from the data based on some prior information, thus overcoming the uncertainty of the traditional ICA. Early gearbox fault signals is often very weak ,characterized by non-Gaussian,low signal-to-noise ratio (SNR), which make the existing diagnosis methods in the diagnosis of early application restricted. In this paper,cICA algorithm is applied to gear fault diagnosis. Through the case studies verify the feasibility of this method to extract the desired independent components (ICs), indicating the applicability and effectiveness of the method.


2009 ◽  
Vol 10 (2) ◽  
pp. 85-115 ◽  
Author(s):  
M. P. S. Chawla

Independent component analysis (ICA) is a new technique suitable for separating independent components from electrocardiogram (ECG) complex signals. The basic idea of using multidimensional independent component analysis (MICA) is to find stable higher dimensional source signal subspaces and to decompose each rotation into elementary rotations within all two-dimensional planes spanned by the coordinate axes useful for diagnostic information of heart. In this paper, ability of ICA for parameterization of ECG signals was felt to reduce the amount of redundant ECG data. This work aims at finding an independent subspace analysis (ISA) model for ECG analysis that allows applicability to any random vectors available in an ECG data set. For the common standards for electrocardiography (CSE) based ECG data sets, joint approximate diagonalization of eigen matrices (Jade) algorithm is used to find smaller subspaces. The extracted independent components are further cleaned by statistical measures. In this study, it is also observed that the value of kurtosis coefficients for the independent components, which represents the noise component, can be further reduced using parameterized multidimensional ICA (PMICA) technique. The indeterminacies if available in the ECG data are to be analysed also using modified version of Jade algorithm to PMICA and parameterized standard ICA (PsICA) for comparative studies. The indeterminacies if available in the ECG data are reduced in PMICA better in comparison to the analysis done using PsICA. The simulation results obtained indicate that ICA definitely improves signal–noise ratio (SNR) like the other higher order digital filtering methods like Kalman, Butterworth etc. with minimum reconstruction errors. Here, it is also confirmed that re-parameterization of the standard ICA model results into a ‘component model’ using MICA technique, which is geometric in spirit and free of indeterminacies existing in sICA model.


Sign in / Sign up

Export Citation Format

Share Document