Study on Three Dimensional Digital Information Platform for Remote Control and Monitoring System of Shearer

2010 ◽  
Vol 108-111 ◽  
pp. 586-591 ◽  
Author(s):  
Hai Bo Sun ◽  
Xiong Duan ◽  
Xin Gang Yao ◽  
Chao Tan

An improved progressive mesh simplification algorithm for 3D real-time level of detail rendering of shearer based on half-collapse was proposed, which has been successfully applied in the rendering of shearer and produced a good result. Virtools with its secondary development technology SDK (Software Development Kit) was applied to establishing a 3DVR(Three Dimensional Virtual Reality) digital information platform for shearer based on real-time archiving of important working parameters. By using the real-time data provided by the remote control and monitoring system for shearer, the virtual 3D model was driven to reappearance the working state and changing trend of the real one instantly. Preliminary experiments carried out in Xi’an Coal Mine Machinery Factory show that the 3DVR Digital Platform can be integrated with the remote control system for shearer well. The ability to real-time display of shearer’s working state is better than that in traditional ways, for the information is displayed in the form of data and curve in traditional control and monitoring system for shearer, which is unrealistic to the operator and unsuitable for remote control and monitoring.

Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6422
Author(s):  
Grega Morano ◽  
Andrej Hrovat ◽  
Matevž Vučnik ◽  
Janez Puhan ◽  
Gordana Gardašević ◽  
...  

The LOG-a-TEC testbed is a combined outdoor and indoor heterogeneous wireless testbed for experimentation with sensor networks and machine-type communications, which is included within the Fed4FIRE+ federation. It supports continuous deployment principles; however, it is missing an option to monitor and control the experiment in real-time, which is required for experiment execution under comparable conditions. The paper describes the implementation of the experiment control and monitoring system (EC and MS) as the upgrade of the LOG-a-TEC testbed. EC and MS is implemented within existing infrastructure management and built systems as a new service. The EC and MS is accessible as a new tab in sensor management system portal. It supports several commands, including start, stop and restart application, exit the experiment, flash or reset the target device, and displays the real-time status of the experiment application. When nodes apply Contiki-NG as their operating system, the Contiki-NG shell tool is accessible with the help of the newly developed tool, giving further experiment execution control capabilities to the user. By using the ZeroMQ concurrency framework as a message exchange system, information can be asynchronously sent to one or many devices at the same time, providing a real-time data exchange mechanism. The proposed upgrade does not disrupt any continuous deployment functionality and enables remote control and monitoring of the experiment. To evaluate the EC and MS functionality, two experiments were conducted: the first demonstrated the Bluetooth Low Energy (BLE) localization, while the second analysed interference avoidance in the 6TiSCH (IPv6 over the TSCH mode of IEEE 802.15.4e) wireless technology for the industrial Internet of Things (IIoT).


2012 ◽  
Vol 224 ◽  
pp. 547-550 ◽  
Author(s):  
Wei Dong Geng ◽  
Yu Gong ◽  
Li Zhang ◽  
Jian An ◽  
Jian De Wu

Designing the three dimensional (3D) GIS software used in monitoring mineral pipeline transporting system. The software can truly show and restore the geography of project and the features of terrain .The operator can not only examine and grasp the true situation of the distribution of pipeline, but also keep watch on the secure running of the pipeline by real-time remote video in the remote control room. The practical application indicates that the pipeline can run safely, stably and efficiently with the monitoring system.


Author(s):  
Bengang Bao ◽  
Xiangping Zhu ◽  
Yonghong Tan

<p class="keywords"><span lang="EN-US">Due to having a direct affect for the growth of crops, the monitor and modification for the indicators of Greenhouse environment play significant roles in improving the yield of crops. The system, which adopts FPGA technology to control and modify the air condition and lighting system by collecting and analyzing the data of the temperature and humidity, has achieved good effects in practice. In our study, the key technology of real-time data acquisition system based on FPGA is proposed. In particular, based on FPGA, the designed ADC0809 and asynchronous FIFO can save the data in real time, which can be analyzed and disposed timely, so that the environment can be corrected in time.</span></p>


2014 ◽  
Vol 1039 ◽  
pp. 251-255
Author(s):  
Zheng Hao Xu ◽  
Xiao Mei Hu ◽  
Dong Wang ◽  
Ru Jiang Zhou ◽  
Tao Yu

With the development of the LED bulb assembly line, the demand of the production line monitoring system is getting higher and higher. A real-time LED bulb assembly line monitoring system based on the OPC technology and Microsoft Visual Studio 2010 software is established. The real-time data of the LED bulb assembly line is provided to achieve the function which concludes alarming, scheduling, showing and so on. LED bulb assembly line monitoring system provides the strong safeguard for the smooth operation of production line.


The main aim of this paper is to deal with remote monitoring of various physical parameters of an electrical device via web-based application. This system facilitate user to monitor the real-time data from across the globe as the whole data is made available through pre-designed website. Real-time monitoring of electrical parameters is needed beside the high performance and precision of measurements with the development of modern industry towards networking. The main objectives of paper are to access the real-time data on global scale, to reduce the cost of visit & maintenance and finally to improve quality as well as throughput of production. All the physical parameters of an electronic device such as temperature, current, gas flow, viscosity etc. will be monitor independently. Microcontroller is used for the interconnection of all sensors and all collected information will be send to the web page using GSM facility. This real-time monitoring system definitely offers user for hassle free data accession. For high precision, repeatability of real-time data monitoring system has been done. This concept is helpful in industrial sectors for real time monitoring.


Author(s):  
Wei Jian Ng ◽  
Zuraini Dahari

Air pollution is one of the biggest threat for the environment and the human’s health. The monitoring of air pollution based on several atmospheric pollutants is becoming critical in most countries including Malaysia. This paper presents a development and enhancement features of real-time Internet of Things (IoT)-based environmental monitoring system for air quality. The proposed system will be beneficial to monitor the real-time data for a specific set of air quality parameters such as temperature, humidity and concentration of carbon monoxide, liquified petroleum gas (LPG) and smoke. An alarm system will be triggered if the concentration of carbon monoxide exceeds 50 ppm. Users can use their smartphone to view these data via Wi-Fi by installing an application called “AirProp”. Based on the collected data, this paper also analyses other contributing factors such as time and traffic condition on the temperature, humidity and concentration of pollutant gases at different locations. The advantage of the real-time system is it serves as the data base platform to store data up to certain duration of time. The data can be further analysed and leveraged by governments and researchers to mitigate air pollution.


2011 ◽  
Vol 1 ◽  
pp. 333-337
Author(s):  
Ai Guo Li ◽  
Jing He ◽  
Jiao Jiao Du ◽  
Qi Yang ◽  
Wen Kai Wang

Real-time monitoring of energy measurement is a crucial and challenging field of application research. Development of practical real-time monitoring system of energy measurement has important practical significance. Measurement of a plant's energy requirements are analyzed, The real-time monitoring of energy measurement are based on B / S structure design , and the actual problems are analyzed and discussed in the real-time monitoring system. The system's design and implementation method are analyzed in the practical application, to meet the requirements of real-time system. the real-time data collection, data analysis, data flow management are involved.


J ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 147-153
Author(s):  
Paula Morella ◽  
María Pilar Lambán ◽  
Jesús Antonio Royo ◽  
Juan Carlos Sánchez

Among the new trends in technology that have emerged through the Industry 4.0, Cyber Physical Systems (CPS) and Internet of Things (IoT) are crucial for the real-time data acquisition. This data acquisition, together with its transformation in valuable information, are indispensable for the development of real-time indicators. Moreover, real-time indicators provide companies with a competitive advantage over the competition since they enhance the calculus and speed up the decision-making and failure detection. Our research highlights the advantages of real-time data acquisition for supply chains, developing indicators that would be impossible to achieve with traditional systems, improving the accuracy of the existing ones and enhancing the real-time decision-making. Moreover, it brings out the importance of integrating technologies 4.0 in industry, in this case, CPS and IoT, and establishes the main points for a future research agenda of this topic.


Sign in / Sign up

Export Citation Format

Share Document