Interfacial Thermal Resistance and Thermal Rectification in Graphene with Geometric Variations of Doped Nitrogen: A Molecular Dynamics Study

2014 ◽  
Vol 1081 ◽  
pp. 338-342 ◽  
Author(s):  
Jing Hui Shi ◽  
Guang Yang ◽  
Xia Long Li ◽  
Xi Huang

Using classical non-equilibrium molecular dynamics simulations (NEMD), the interfacial thermal resistance and thermal rectification of nitrogen-doped zigzag graphene (NDZG) are investigated. Two different structural models about nitrogen-doped graphene are constructed. It is found that the interfacial thermal resistance at the location of nitrogen-doping causes severe reduction in thermal conductivity of the NDZG. Thermal rectification of the triangular single-nitrogen-doped graphene (SNDG) decreases with increasing temperature. However, thermal rectification is not detected in the parallel various–nitrogen-doped graphene (VNDG). These results suggest that SNDG might be a promising structure for thermal device.

Author(s):  
Juekuan Yang ◽  
Zhenghua Liu ◽  
Yujuan Wang ◽  
Yunfei Chen

The thermal rectification at the interface of double-layered nanofilm is investigated by molecular dynamics simulation. It is found that the interfacial thermal resistance is asymmetric, namely, it depends on the direction of heat flow across the interface. And at high temperature, the rectification of interfacial thermal resistance decreases with increasing temperature. The simulation results also demonstrated that the rectifying effects can not be interpreted only by temperature difference at interface.


Author(s):  
Arian Mayelifartash ◽  
Mohammad Ali Abdol ◽  
Sadegh Sadeghzadeh

In this paper, by employing non-equilibrium molecular dynamics simulations (NEMD), the thermal conductance of hybrid formed by polyaniline (C3N) and boron carbide (BC3) in both armchair and zigzag configurations has...


2012 ◽  
Vol 134 (9) ◽  
Author(s):  
Li Wei ◽  
Feng Yanhui ◽  
Peng Jia ◽  
Zhang Xinxin

The thermal conductivity of carbon nanotubes with Stone-Wales (SW) defects was investigated using non-equilibrium molecular dynamics method. The defect effects were analyzed by the temperature profile and local thermal resistance of the nanotubes with one or more SW defects and further compared with perfect tubes. The influences of the defect concentration, the length, the chirality and the radius of tubes and the ambient temperature were studied. It was demonstrated that a sharp jump in the temperature profile occurred at defect position due to a higher local thermal resistance, thus dramatically reducing the thermal conductivity of the nanotube. As the number of SW defects increases, the thermal conductivity decreases. Relative to the chirality, the radius has greater effects on the thermal conductivity of tubes with SW defects. With the similar radius, the thermal conductivity of armchair nanotube is higher than that of zigzag one. The shorter nanotube is more sensitive to the defect than the longer one. Thermal conductivity of the nanotube increases with ambient temperature, reaches a peak, and then decreases with increasing temperature.


Author(s):  
Touru Kawaguchi ◽  
Gota Kikugawa ◽  
Ikuya Kinefuchi ◽  
Taku Ohara ◽  
Shinichi Yatuzuka ◽  
...  

The interfacial thermal resistance of 11-mercaptoundecanol (-S(CH2)11OH) self-assembled monolayer (SAM) adsorbed on Au(111) substrate and water was investigated using nonequilibrium molecular dynamics simulations. The interfacial thermal resistance was found to be a half of that in the system which consists of 1-dodecanthiol (-S(CH2)11CH3) SAM adsorbed on Au(111) and toluene [Kikugawa G. et al., J. Chem. Phys. (2009)]. The effective thermal energy transfer originates from hydrogen-bond structure between the SAM and water molecules in spite of weak structurization of water molecules near the SAM surface.


Author(s):  
Tad Whiteside ◽  
Marie A. Priest ◽  
Clifford W. Padgett

In this paper, the effect on the interfacial thermal resistance between a composite system composed of a carbon nanotube or diamond nanorod and an octane matrix by the functionalization of those nanostructures with alkyl chains has been examined using molecular dynamics simulations. The effect of functionalization was studied by varying the percent functionalization from 0.00% to 2.00% using octyl as the functional group. As the percent functionalization increased, both systems showed a decrease in the interfacial thermal resistance. At 1.00% functionalization, as the alkyl chain length was increased from one to eight atoms, the interfacial thermal resistance of the carbon nanotube systems decreased to a minimum, while in the diamond nanorod system the interfacial thermal resistance remained constant.


Sign in / Sign up

Export Citation Format

Share Document