Effect of Cu-Excess on the Microstructure and Microwave Dielectric Properties of CaCu3Ti4O12 Ceramics

2015 ◽  
Vol 1087 ◽  
pp. 50-54 ◽  
Author(s):  
Mohamad Johari Abu ◽  
Julie Juliewatty Mohamed ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad

CaCu(3+x)Ti4O12 (CCTO) ceramics with different Cu-excess (x = 0 – 0.6) were prepared by conventional solid-state reaction method. Characterization of the prepared ceramics with XRD and FESEM showed that lattice parameter and grain size are slightly increased, indicating Cu-excess to have the big impact on the both phase structure and microstructure. The XRD profiles indicated that the secondary phase (CuO or Cu2O) existed at edge/corner of CCTO grain, which promoted inhibited grain growth behavior. The CCTO ceramics exhibited two trends of dielectric constant related to frequency, which showed a flatter curve about ~50 in 1 – 25 GHz regions, and it’s dropped rapidly to ~35 in 25 – 50 GHz region. With Cu-excess, the dielectric constant of the ceramics was increased for an average of a quarter-order of magnitude, while the tangent loss also increased up to triple times than x = 0, for the same frequency range. Despite enormous increase of dielectric constant related to varying Cu-excess, the tangent loss also increased.

2007 ◽  
Vol 280-283 ◽  
pp. 35-38 ◽  
Author(s):  
Ai Min Yang ◽  
Wei Chen ◽  
Lan Luo

(1-x)La2/3TiO3-xLa(Mg1/2Ti1/2)O3 ceramics with x ranging from 0.01 to 0.3 were prepared by the conventional solid-state reaction method. Microstructure and microwave dielectric properties were studied. The perovskite compound La2/3TiO3 is stabilized when x = 0.1. The content of La2/3TiO3 increases with increasing x from 0.01 to 0.1, and thereafter decreases when x > 0.1. The same tendency was also observed on measuring the dielectric constant, temperature coefficient of resonant frequency and Q× ƒ. A maximum permittivity of 77.35 was achieved with these stabilized La2/3TiO3 ceramics. Close to zero τf value (1 ppm/°C) was obtained at x=0.3, but its Q× ƒ value was relative low.


2007 ◽  
Vol 280-283 ◽  
pp. 145-150 ◽  
Author(s):  
Ping Huang ◽  
Ting Xian Xu ◽  
Feng Hou ◽  
Qiang Zou

Strontium bismuth titanate (SBTi) matrix composites containing Ag particles were synthesized by the conventional solid-state reaction method. The SBTi/Ag composites have been characterized by various techniques: x-ray diffraction, optical metallurgical microscope, scanning electron microscope and dielectric measurement. It is found that Ag doping significantly affect the physical properties of composites. By adding Ag particles to the SBTi matrix, the single-phase layered perovskite structure of the matrix is preserved and the sintering temperature of the system decrease from 1120°C of the single-phase SBTi to 950°C of the SBTi/Ag composites. With the increase of sintering temperature, the size of silver particles increase, but the SBTi grains have no significant growth. The SBTi/Ag composites show a significant change of the dielectric constant. By increasing Ag content, a gradual increase of the dielectric constant is observed and the dielectric loss of the SBTi/Ag composites remain unchanged when the temperature rangers from room temperature to 200°C, however, the Curie peak of dielectric constant is repressed, which has been interpreted based on the effective dielectric fields developed around conducting phases and the inhibition effect of nonferroelectric secondary phase to electro-strain.


2007 ◽  
Vol 280-283 ◽  
pp. 23-26
Author(s):  
J. Luo ◽  
Z.Y. Pang ◽  
Y.S. Lin ◽  
Zhao Xian Xiong

MnCO3 was added into ZnNb2O6 ceramics to obtain excellent microwave dielectric properties. The samples were prepared by conventional solid-state reaction method. The effects of the amount of MnCO3 on sintering temperatures, ceramic densities and contraction were systematically investigated. The crystalline structure of ceramic body was analyzed by XRD. The ceramic microstructure was observed by SEM. The dielectric properties of ZnNb2O6 ceramics were measured by a vector network analyzer at microwave frequency, which showed: er = 22.65, Q×f = 36700 GHz (loaded value) and tf = -40 ppm/°C.


2009 ◽  
Vol 421-422 ◽  
pp. 69-72
Author(s):  
Jie Shen ◽  
Wen Chen ◽  
Jing Zhou ◽  
Jie Zhu ◽  
Qiong Lei

The relationship between the character of the B-site cation–oxygen bond and the microwave dielectric properties in perovskites dielectric materials was studied in this paper. The atomic net charge of CaTiO3 (CT) and Ca(Zn1/3Nb2/3)O3 (CZN) was calculated respectively. The calculating result implies that the covalency of B-O bonds in CZN is stronger than that in CT. This predicted that the dielectric constant and loss of the ceramics will decrease after CZN incorporated in CT. To confirme the prediction, (1-x)CT-xCZN microwave dielectric ceramics were prepared by solid state reaction method with ZnNb2O6 as precursor. The structure analysis in terms of tolerance factor gives an identical result as calculation. The microwave dielectric properties, such as dielectric constants, Q×f values and τf were studied as a function of composition. With x increasing from 0.2 to 0.8, the dielectric constant linearly decreases from 109 to 49.37, the Q×f value increases from 8,340 to 13,200 GHz, and τf decreases from 321 to -18 ppm/°C. The properties trends are consistent with the previous calculation results, and confirm the relationship between the character of B-O bond and dielectric properties.


2007 ◽  
Vol 336-338 ◽  
pp. 287-289
Author(s):  
Wei Wang ◽  
Zi Long Tang ◽  
Zhong Tai Zhang

(1-x)(Ca0.61Nd0.26)TiO3-x(Li0.5Sm0.5)TiO3 (0.2 ≤ x ≤ 0.7) ceramics were prepared by solid-state reaction method and the microwave dielectric properties of the resultant materials at different (Li0.5Sm0.5)TiO3 contents were investigated. A single phase of perovskite in all samples was confirmed by XRD patterns. With increasing (Li0.5Sm0.5)TiO3 content, Q×f value and dielectric constant (εr) decrease slightly and the temperature coefficients of the resonant frequency (τf) of the specimens decreases noticeably. The optimum parameters, i.e.,εr = 109, Q×f = 5259 GHz and τf = ~0 ppm/°C, for the composition of 0.4(Ca0.61Nd0.26)TiO3-0.6(Li0.5Sm0.5)TiO3 was obtained when keep the calcination temperature at 1250°C for 3 h.


2017 ◽  
Vol 726 ◽  
pp. 210-214
Author(s):  
Xu Wang ◽  
Ren Li Fu ◽  
Yue Xu ◽  
Yang Yang ◽  
Jun De Cai ◽  
...  

xBaZn2Ti4O11–(1-x)BaNd2Ti4O12 (x = 0.18–0.30) ceramics were prepared by solid-state reaction method and their microwave dielectric properties were investigated with the purpose of finding a microwave ceramics with high dielectric constant (εr), high quality factor (Q×f ) and zero temperature coefficient of resonant frequency (τf).The two phase system BaZn2Ti4O11–BaNd2Ti4O12 affected the unit cell volume and the microstructure, the microwave dielectric properties (εr, Q×f, τf). As increasing x from 0.18 to 0.30, the main phase composition was BaNd2Ti4O12. Therefore, the εr decreased from 64.9 to 60.3 and the Q×f values raised from 11,350GHz to 13,210GHz, and the τf values decreased from 7ppm/° to -5ppm/°.The 0.22BaZn2Ti4O11–0.78BaNd2Ti4O12 ceramics sintered at 1250°C for 4 h displayed the best dielectric constant εr,Q×f and τf, as 63.9, 12380 GHz and-0.1 ppm/° respectively.


2011 ◽  
Vol 687 ◽  
pp. 199-203 ◽  
Author(s):  
Ching Fang Tseng

The microwave dielectric properties of the Mg(Zr0.05Ti0.95)O3ceramics with CuO addition were investigated. All specimens were prepared by solid-state reaction method and sintered at 1270-1420°C for 4 h. When CuO was added, the second phases of MgTi2O5, TiO2and liquid phase were produced. For specimens with 1.5 wt% CuO sintered at 1300°C, the dielectric constant,Q´fand tfvalues are 18.2, 223000 GHz and -2 ppm/°C, respectively.


2011 ◽  
Vol 239-242 ◽  
pp. 77-80 ◽  
Author(s):  
Ji Hong Liao ◽  
Ying Dai ◽  
Ren Zhou Yang ◽  
Wen Chen

Low-temperature sintered Ca[(Li1/3Nb2/3)0.8Ti0.2]O3-δ (CLNT) microwave dielectric ceramics with V2O5 and ZnO additives were prepared by the conventional solid state reaction method. The sintering behavior and microwave dielectric properties of CLNT ceramics were investigated. The main diffraction peaks of all the specimens sintered at the temperature under 1150◦C split due to the coexistence of the non-stoichiometric phase and stoichiometric phase, which all possess CaTiO3-type perovskite structures. ZnO and V2O5 combined additives lowered the sintering temperature of CLNT ceramics from 1150◦C to 1090◦C. and the Qf values were improved from 18,210 GHz to 20,740 GHz. The CLNT ceramics with 4 wt% ZnO addition sintered at 1090◦C showed good microwave dielectric properties with εr ~39.7, Qf ~20,740 GHz, τf ~8.6 ppm/◦C. The relationship between dielectric properties and the sintering behavior was also discussed.


2019 ◽  
Vol 37 (4) ◽  
pp. 639-644 ◽  
Author(s):  
Abdul Manan ◽  
Asif Nawaz ◽  
Arbab Safeer Ahmad ◽  
Atta Ullah ◽  
Arshad Hussain Wazir ◽  
...  

AbstractMg0.95Ni0.05Ti0.98Zr0.02O3 and CaTiO3 were prepared separately using solid state reaction method. The effect of CaTiO3 addition on the microwave dielectric properties of Mg0.95Ni0.05Ti0.98Zr0.02O3 was investigated to get low loss and temperature stable ceramics in (1 – x)Mg0.95Ni0.05Ti0.98Zr0.02O3-xCaTiO3 series. Mg0.95Ni0.05Ti0.98Zr0.02O3 formed as the major phase along with Mg0.95Ni0.05Ti2O5 phase that formed as minor secondary phase for the composition with x = 0. Microwave dielectric properties ∈r ~ 17.1, Qufo of 195,855 GHz and τf of –46.3 ppm/°C were obtained for the composition with x = 0. The positive τf value of CaTiO3, tuned the τf value of Mg0.95Ni0.05Ti0.98Zr0.02O3 through zero and ∈r ~ 28.4, Qufo ~ 108,775 GHz and τf ~ 3.1 ppm/°C were attained for x = 0.15 in this study. This composition is the best choice for high frequency applications.


2021 ◽  
Vol 106 ◽  
pp. 54-59
Author(s):  
Hymavathi Basireddy ◽  
Gopal Reddy Thukkaraju ◽  
Rajesh Kumar Borra ◽  
Subba Rao Thota

Calcium Bismuth Titanate (CaBi4Ti4O15) ceramics were prepared by conventional solid-state reaction method. X-ray diffraction patterns confirms the orthorhombic structure of CaBi4Ti4O15 and the lattice parameters were also determined. Bulk densities of the sintered ceramics were measured by the Archimedes method with xylene as the liquid media and found to be 97~98% of X-ray density. The surface morphology of CaBi4Ti4O15 is studied by Scanning Electron Microscope (SEM) attached with energy dispersive X-ray spectroscopy (EDS) inorder to determine the grain size as well as the chemical composition of CaBi4Ti4O15. The dielectric constant (k) and dielectric tangent loss (tan δ) of CaBi4Ti4O15 as a function of temperature were measured in the frequency range of 100 Hz-100 KHz. The dielectric constant, dielectric loss and ac conductivity of CaBi4Ti4O15 increases gradually with an increase in the temperature from 303 to 573 K. The ac conductivity of the prepared sample reveals that the conduction mechanism is electronic hoping


Sign in / Sign up

Export Citation Format

Share Document