Searching for Durable and Friendly Alkali Activated Concrete for Building Elements Constructions

2015 ◽  
Vol 1098 ◽  
pp. 126-131 ◽  
Author(s):  
Vlastimil Bilek ◽  
Jan Hurta ◽  
Libor Zidek ◽  
Pavel Mec

Alkali activated concrete (AAC) are considered a promising building material. They show high strength, good durability, and good resistance to aggressive agents etc. But these good properties are controlled by the good design of the concretes. The paper presents the results which were recorded for self-compacting AACs with the water to slag ratio 0.50 - 0.52. The resistance of these concretes to Na2SO4, NH4Cl and acetate acid is presented in this paper. These agents were selected because they represent agents which are present in compost or sewage.

2010 ◽  
Vol 452-453 ◽  
pp. 721-724
Author(s):  
Gum Sung Ryu ◽  
Hyun Jin Kang ◽  
Su Tae Kang ◽  
Gyung Taek Koh ◽  
Jang Hwa Lee

Recently, research on alkali-activated concrete that does not use cement as binder has been actively conducted. This alkali-activated concrete is a cement zero concrete which, instead of cement, is activated by alkali solution using fly ash known to be rich of Si and Al and enables to reduce effectively the emission of CO2 gas. This paper presents a basic study for the manufacture of cementless concrete using 100% of fly ash. To that goal, the mechanical characteristics of cementless concrete is evaluated according to the age and the variation of the molar concentration of the alkali activator with focus on the identification of the reaction mechanism. The experimental results show that larger molar concentration elutes larger quantities of Si4+ and Al3+. Specifically, approximately twice larger quantities of Si4+ and Al3+ were eluted for molar concentrations of 9M and 12M than 6M. The formation of gel at the surface of fly ash appeared to be caused by the stronger activation of fly ash in higher alkali environment. The resulting compressive strengths per age indicated that the strength of concrete could be controlled according to the molar concentration of NaOH. Moreover, results also demonstrated that a molar concentration of 9M for NaOH seems to be appropriate to secure a strength superior to 40MPa as the reference for high strength concrete in ordinary concrete.


2009 ◽  
Vol 417-418 ◽  
pp. 721-724 ◽  
Author(s):  
Kyung Taek Koh ◽  
Su Tae Kang ◽  
Gum Sung Ryu ◽  
Hyun Jin Kang ◽  
Jang Hwa Lee

This study investigates the effects of alkaline activators and curing method on the compressive strength of mortar for the development of cementless alkali-activated concrete using 100% of fly ash as binder. Results reveal that the compressive strength improved according to the increase of the molar concentration of NaOH. In addition, molar ratio Na2O to SiO2 of 1.12 activated the reaction of fly ash with Si and Al constituents and resulted in the most remarkable development of strength. In the case of mortar requiring high strength at early age, higher curing temperatures appeared to be advantages. Curing at 60°C during 48 hours is recommended for requiring high strength at age 28days. Moreover, performing atmospheric curing after high temperature curing appeared to be more effective for the development of strength than water curing. Based on these results, it has been analyzed that alkaline activators fabricated with proportions of 1:1 of 9M NaOH and sodium silicate should be used and that atmospheric curing should be performed after curing at 60°C during 48 hours to produce high strength alkali-activated mortar exhibiting compressive strength of 70MPa at age 28 days.


Alloy Digest ◽  
1975 ◽  
Vol 24 (2) ◽  

Abstract Copper Alloy No. 954 is a copper-aluminum-iron alloy characterized by high strength and hardness, good resistance to fatigue and wear, and excellent corrosion resistance. It is suited for service up to 750 F. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-292. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1986 ◽  
Vol 35 (12) ◽  

Abstract UNS No. A03560 is a heat-treatable aluminum casting alloy. Normally it is used only when heat-treated (aged) strengths are required. It is recommended for high-strength, pressure-tight castings, intricate shapes and where good resistance to corrosion is needed. Its many applications include crank cases, gear cases, oil pans, airframe fittings and instrument housings. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on high temperature performance and corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Al-274. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1989 ◽  
Vol 38 (2) ◽  

Abstract UNS N09706 is a precipitation-hardenable, nickel-iron-chromium alloy with high strength at temperatures to 1200 F and with good resistance to oxidation and corrosion over a broad range of temperatures and environments. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep and fatigue. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, joining, and surface treatment. Filing Code: Ni-368. Producer or source: Nickel and nickel alloy producers.


Alloy Digest ◽  
1978 ◽  
Vol 27 (4) ◽  

Abstract AMPCO 483 is a copper-base alloy that can be used in the cast or wrought form. It provides high strength, high hardness, excellent resistance to corrosion and good resistance to fatigue and wear. It is well suited for service at temperatures up to 750 F and for applications such as pickling equipment, nuts and marine hardware. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, forming, heat treating, machining, and joining. Filing Code: Cu-352. Producer or source: Ampco Metal Inc..


Alloy Digest ◽  
1986 ◽  
Vol 35 (7) ◽  

Abstract UNS No. A97075 is a wrought precipitation-hardenable aluminum alloy. It has excellent mechanical properties, workability and response to heat treatment and refrigeration. Its typical uses comprise aircraft structural parts and other highly stressed structural applications where very high strength and good resistance to corrosion are required. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and shear strength as well as fatigue. It also includes information on low temperature performance as well as forming, heat treating, and machining. Filing Code: Al-269. Producer or source: Various aluminum companies.


Alloy Digest ◽  
1986 ◽  
Vol 35 (5) ◽  

Abstract Copper Alloy No. C86100 is a copper-zinc-aluminum-manganese-iron alloy, sometimes classified as a high-strength yellow brass. The principal strengthening element is aluminum. Its tensile strength is typically 95,000 psi (655 MPa). It has a good combination of strength and ductility along with good resistance to corrosion. Its typical uses are marine castings, gears, gun mounts, bearing and bushings. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive strength as well as fracture toughness. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-510. Producer or source: Copper alloy foundries.


Alloy Digest ◽  
1985 ◽  
Vol 34 (7) ◽  

Abstract Copper Alloy No. C86700 is a free-machining, high-tensile (typically 85,000 psi) cast manganese bronze; it is also known as high-strength yellow brass. It has an excellent combination of strength and ductility and good resistance to corrosion in numerous environments, including seawater. Typical uses are valve stems, moderate-duty gears and marine components. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on corrosion resistance as well as casting, heat treating, machining, and joining. Filing Code: Cu-499. Producer or source: Copper alloy foundries.


Sign in / Sign up

Export Citation Format

Share Document