Preparation and Characterization of PVDF-DMAc-Nano SiO2 Distillation Membrane

2016 ◽  
Vol 1133 ◽  
pp. 561-565
Author(s):  
Azlin Hamidi ◽  
Wan Dung Teng ◽  
Saifollah Abdullah

Polyvinylidene fluoride (PVDF) membranes were prepared with different compositions of SiO2 nanoparticles. PVDF is one of the most widely used in membrane technology. The molecular structure of PVDF fluoropolymer provides high chemical resistance, good mechanical properties and thermal stability. It also can be used as composites with inorganic nanoparticles such as SiO2 to improve the performance and properties of the membrane. In this study, Dimethylacetamide (DMAc) was used as solvent. The prepared membranes were characterized using contact angle measurements with water, atomic force microscope (AFM) and scanning electron microscope (SEM) for the structures of the membranes and mechanical strength. The experimental results showed that additional of nanoSiO2 will exhibit different characteristic on the microstructure and mechanical strength of the membrane.

e-Polymers ◽  
2012 ◽  
Vol 12 (1) ◽  
Author(s):  
Zdenka Kolská ◽  
Alena Řezníčková ◽  
Václav Švorčík

AbstractElectrokinetic potential (zeta potential) for selected 21 polymer foils was studied. The results on zeta potential are supplemented with contact angle measurements (goniometry) and with the results on surface roughness measured by atomic force microscopy (AFM). Zeta potential was determined using two approaches: streaming current and streaming potential at pH=6.0-6.2. Two electrolyte solutions with KCl (concentrations 0.001 and 0.005 mol/dm3) and KNO3 (0.001 mol/dm3) were used in the experiments. Zeta potential was shown to depend on surface chemistry, polarity, roughness and morphology of the polymer foils.


2012 ◽  
Vol 1433 ◽  
Author(s):  
Alexandra Oliveros ◽  
Anthony Guiseppi-Elie ◽  
Mark Jaroszeski ◽  
Stephen E. Saddow

ABSTRACTIn this work we describe the characterization of anti-myoglobin immobilization on 3C-SiC (100) by means of surface modification with 3-aminopropyltriethoxysilane (APTES). Surface water contact angle measurements were used to compare the wettability of 3C-SiC (100) before (16 ±3°) and after APTES layer formation (61 ±1°). Atomic force microscopy (AFM) was used to confirm the homogenous formation of APTES and anti-myoglobin immobilization with EDC-sulfo NHS coupling. For the APTES surfaces no significant change in the surface roughness was obtained whereas with anti-myoglobin surfaces, particles on the order of ∼60 nm in diameter with a globular shape were observed.


2020 ◽  
Author(s):  
Michelina Soccio ◽  
Nadia Lotti ◽  
Andrea Munari ◽  
Esther Rebollar ◽  
Daniel E Martínez-Tong

<p>Nanostructured wrinkles were developed on fully bio-based poly(trimethylene furanoate) (PTF) films by using the technique of Laser Induced Periodic Surface Structures (LIPSS). We investigated the effect of irradiation time on wrinkle formation using an UV pulsed laser source, at a fluence of 8 mJ/cm2. It was found that the pulse range between 600 and 4800 pulses allowed formation of periodic nanometric ripples. The nanostructured surface was studied using a combined macro- and nanoscale approach. We evaluated possible physicochemical changes taking place on the polymer surface after irradiation by infrared spectroscopy, contact angle measurements and atomic force microscopy. The macroscopic physicochemical properties of PTF showed almost no changes after nanostructure formation, differently from the results previously found for the terephthalic counterparts, as poly(ethyleneterephthalate), PET, and poly(trimethyleneterephthalate), PTT. The surface mechanical properties of the nanostructured PTF were found to be improved, as evidenced by nanomechanical force spectroscopy measurements. In particular, an increased Young’s modulus and higher stiffness for the nanostructured sample were measured. <br></p>


Author(s):  
J. Barriga ◽  
B. Ferna´ndez ◽  
E. Abad ◽  
B. Coto

Despite progresses achieved in the technology of MEMS, the tribological problem continues being an unresolved matter. Wear and stick-slip phenomena are many times the origin of failure of these devices. The application of self-assembled monolayers (SAMs) in liquid phase seems to be a solution to this problems. SAMs of octadecyltrichlorosilane (CH3(CH2)17SiCl3, OTS) were attached to Si(100) oxidized in liquid phase. Contact angle measurements were used for characterizing the grade of hydrophobicity. The topography of the coating was obtained with an Atomic Force Microscopy (AFM) in semicontact mode. The images showed the presence of particles related to the polymerization of the precursor molecule during the formation process of the SAMs. Creating the film of lubricant in vapour phase would avoid this undesirable effect. Tribological tests were carried out with a microtribometer in linear reciprocating movement with a ball of 2 mm of diameter (100Cr6 and Si3N4) and load of some milinewtons. Results were compared with those obtained for silicon oxidized without any coating. The coefficient of friction (COF) and wear (substrate and ball) were studied under different test conditions.


1992 ◽  
Vol 73 (2-3) ◽  
pp. 163-172 ◽  
Author(s):  
Dietmar Flösch ◽  
Giorgio Clarotti ◽  
Kurt E. Geckeler ◽  
François Schué ◽  
Wolfgang Göpel

Materials ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3171
Author(s):  
AbdolAli Moghaddasi ◽  
Patrik Sobolčiak ◽  
Anton Popelka ◽  
Igor Krupa

Purpose: Copolyamide 6,10 (coPA) electrospun mats were covered with multilayered (ML) and single-layered (SL) MXene (Ti3C2Tx) as a membrane for the separation of water/vegetable oil emulsions. Methods: Prepared membranes were characterized by atomic force microscopy (AFM), profilometry, the contact angle measurements of various liquids in air, and the underwater contact angle of vegetable oil. The separation efficiency was evaluated by measuring the UV transmittance of stock solutions compared to the UV transmittance of the filtrate. Results: The MXene coating onto coPA mats led to changes in the permeability, hydrophilicity, and roughness of the membranes and enhanced the separation efficiency of the water/vegetable oil emulsions containing 10, 100, and 1000 ppm of sunflower vegetable oil. It was found that membranes were highly oleophobic (>124°) under water, unlike in air, where the membranes showed high oleophobicity (<5°). The separation efficiency of water/oil emulsions for both types of covered membranes reached over 99%, with a surface coverage of 3.2 mg/cm2 Ti3C2Tx (for ML-Ti3C2Tx) and 2.9 mg/cm2 (for SL-Ti3C2Tx). Conclusions: The separation efficiency was greater than 98% for membranes covered with 2.65 mg/cm2 of ML-Ti3C2Tx, whereas the separation efficiency for membranes containing 1.89 and 0.77 mg/cm2 was less than 90% for all studied emulsion concentrations.


Sign in / Sign up

Export Citation Format

Share Document