Investigating the Reproducibility of the Wire Arc Additive Manufacturing Process

2021 ◽  
Vol 1161 ◽  
pp. 95-104
Author(s):  
Christoph Halisch ◽  
Christof Gaßmann ◽  
Thomas Seefeld

Wire arc additive manufacturing (WAAM) of titanium parts shows promising potential for aerospace application due to its high deposition rates allowing a fast and economical production of large integral parts. However, due to the demands of aerospace industry an extensive qualification procedure is necessary to enable the parts as ready to fly. Nowadays, qualification for additive manufactured parts is a time-consuming process, so the advantages in additive manufacturing cannot be fully utilized. For this reason, a complete process qualification for WAAM would reduce the costs drastically in contrast to qualifying manufactured parts individually. As a first step the robustness and reproducibility of the energy reduced WAAM process was investigated. Thick-walled samples are manufactured layer by layer with an oscillating welding head motion. The mechanical properties of the samples are compared on an adequate statistical basis. Microstructural-and computer tomography analysis are conducted to comprehend shown interactions. The reproducibility is investigated in dependence of different heat treatment states, different directions of mechanical testing and two manufacturing systems of the same type.

Author(s):  
Yashwant Koli ◽  
N Yuvaraj ◽  
Aravindan Sivanandam ◽  
Vipin

Nowadays, rapid prototyping is an emerging trend that is followed by industries and auto sector on a large scale which produces intricate geometrical shapes for industrial applications. The wire arc additive manufacturing (WAAM) technique produces large scale industrial products which having intricate geometrical shapes, which is fabricated by layer by layer metal deposition. In this paper, the CMT technique is used to fabricate single-walled WAAM samples. CMT has a high deposition rate, lower thermal heat input and high cladding efficiency characteristics. Humping is a common defect encountered in the WAAM method which not only deteriorates the bead geometry/weld aesthetics but also limits the positional capability in the process. Humping defect also plays a vital role in the reduction of hardness and tensile strength of the fabricated WAAM sample. The humping defect can be controlled by using low heat input parameters which ultimately improves the mechanical properties of WAAM samples. Two types of path planning directions namely uni-directional and bi-directional are adopted in this paper. Results show that the optimum WAAM sample can be achieved by adopting a bi-directional strategy and operating with lower heat input process parameters. This avoids both material wastage and humping defect of the fabricated samples.


2021 ◽  
Author(s):  
Ashish Kulkarni ◽  
Prahar M. Bhatt ◽  
Alec Kanyuck ◽  
Satyandra K. Gupta

Abstract Robotic Wire Arc Additive Manufacturing (WAAM) is the layer-by-layer deposition of molten metal to build a three-dimensional part. In this process, the fed metal wire is melted using an electric arc as a heat source. The process is sensitive to the arc conditions, such as arc length. While building WAAM parts, the metal beads overlap at corners causing material accumulation. Material accumulation is undesirable as it leads to uneven build height and process failures caused by arc length variation. This paper introduces a deposition speed regulation scheme to avoid the corner accumulation problem and build parts with uniform build height. The regulated speed has a complex relationship with the corner angle, bead geometry, and molten metal dynamics. So we need to train a model that can predict suitable speed regulations for corner angles encountered while building the part. We develop an unsupervised learning technique to characterize the uniformity of the bead profile of a WAAM built layer and check for anomalous bead profiles. We train a model using these results that can predict suitable speed regulation parameters for different corner angles. We test this model by building a WAAM part using our speed regulation scheme and validate if the built part has uniform build height and reduced corner defects.


2016 ◽  
Vol 877 ◽  
pp. 611-616 ◽  
Author(s):  
J. Fixter ◽  
J. Gu ◽  
J. Ding ◽  
Stewart W. Williams ◽  
Philip B. Prangnell

An investigation has been performed into the compatibility of aluminum alloys used in the aerospace industry with Wire-Arc Additive Manufacturing. Modelling and preliminary experimental trials have been performed to show that it is viable to use Al-Cu-Mg alloys, like 2024, without solidification cracking. A relatively fine and texture free grain structure was obtained in the as-deposited WAAM material and the addition of inter-pass deformation, by rolling each added layer, led to further grain size refinement. With adequate control of porosity and subsequent heat treatment, the WAAM material was found to have tensile properties comparable to that of standard wrought products.


Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5370
Author(s):  
Geir Langelandsvik ◽  
Odd M. Akselsen ◽  
Trond Furu ◽  
Hans J. Roven

Processing of aluminum alloys by wire arc additive manufacturing (WAAM) gained significant attention from industry and academia in the last decade. With the possibility to create large and relatively complex parts at low investment and operational expenses, WAAM is well-suited for implementation in a range of industries. The process nature involves fusion melting of a feedstock wire by an electric arc where metal droplets are strategically deposited in a layer-by-layer fashion to create the final shape. The inherent fusion and solidification characteristics in WAAM are governing several aspects of the final material, herein process-related defects such as porosity and cracking, microstructure, properties, and performance. Coupled to all mentioned aspects is the alloy composition, which at present is highly restricted for WAAM of aluminum but received considerable attention in later years. This review article describes common quality issues related to WAAM of aluminum, i.e., porosity, residual stresses, and cracking. Measures to combat these challenges are further outlined, with special attention to the alloy composition. The state-of-the-art of aluminum alloy selection and measures to further enhance the performance of aluminum WAAM materials are presented. Strategies for further development of new alloys are discussed, with attention on the importance of reducing crack susceptibility and grain refinement.


Author(s):  
Vivek Kumar P ◽  
◽  
Soundrapandian E ◽  
Jenin Joseph A ◽  
Kanagarajan E ◽  
...  

Additive manufacturing process is a method of layer by layer joining of materials to create components from three-dimensional (3D) model data. After their introduction in the automotive sector a decade ago, it has seen a significant rise in research and growth. The Additive manufacturing is classified into different types based upon the energy source use in the fabrication process. In our project, we used self-build CNC machine that runs MACH3 software, as well as the MACH3 controller is used to control the welding torch motion for material addition through three axis movement (X, Y and Z). In the project we used ER70 S-6 weld wire for the fabrication and examined its microstructure and mechanical properties. Different layers of the specimen had different microstructures, according to microstructural studies of the product. Rockwell hardness tester used for testing hardness of the product. According to the observation of the part fabricated components using the Wire Arc Additive Manufacturing process outperformed the mechanical properties of mild steel casting process. The product fabricated by Wire Arc Additive Manufacturing process properties is superior to conventional casting process.


Author(s):  
Marcus O. Couto ◽  
Arthur G. Rodrigues ◽  
Fernando Coutinho ◽  
Ramon R. Costa ◽  
Antonio C. Leite ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3548
Author(s):  
Chad W. Sinclair ◽  
Ralf Edinger ◽  
Will Sparling ◽  
Amin Molavi-Kakhki ◽  
Chantal Labrecque

Commercial powder bed fusion additive manufacturing systems use re-coaters for the layer-by-layer distribution of powder. Despite the known limitations of re-coaters, there has been relatively little work presented on the possible benefits of alternative powder delivery systems. Here, we reveal a feeding technology that uses vibration to control flow for powder bed additive manufacturing. The capabilities of this approach are illustrated experimentally using two very different powders; a ‘conventional’ gas atomized Ti-6Al-4V powder designed for electron beam additive manufacturing and a water atomized Fe-4 wt.% Ni alloy used in powder metallurgy. Single layer melt trials are shown for the water atomized powder to illustrate the fidelity of the melt tracks in this material. Discrete element modelling is next used to reveal the mechanisms that underpin the observed dependence of feed rate on feeder process parameters and to investigate the potential strengths and limitations of this feeding methodology.


2018 ◽  
Vol 4 (1) ◽  
pp. 39-53 ◽  
Author(s):  
Efrain Rodriguez ◽  
Renan Bonnard ◽  
Alberto José Alvares

The new standard of numerical control, known as STEP-NC, is categorized as the future of the advanced manufacturing systems. Greater flexibility and interoperability are some potential benefits offered by STEP-NC to meet the challenges of the new industrial landscape that is envisaged with the advent of Industry 4.0. Meanwhile, STEP-NC object-oriented programming has been partially applied and developed for machining processes (milling, turning...). But with the processes of additive manufacturing has not happened the same and the development is still incipient. This work presents the advances in the development of a new STEP-NC compliant additive manufacturing system, focusing particularly on the development of the information model. The application model activities in the IDEF0 nomenclature and application reference model in EXPRESS are presented. The AM-layer-feature concept has been introduced to define the manufacturing feature of additive processes based on material deposition layer-by-layer. Finally, a STEP-NC program generated from the EXPRESS model is presented, which can be implemented on an additive manufacturing system to validate the proposed model.                                                                                           


Metals ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 578 ◽  
Author(s):  
Philipp Henckell ◽  
Yarop Ali ◽  
Andreas Metz ◽  
Jean Pierre Bergmann ◽  
Jan Reimann

As part of a feasibility study, an alternative production process for titanium aluminides was investigated. This process is based on in situ alloying by means of a multi-wire technique in the layer-wise additive manufacturing process. Thereby, gas metal arc welding (GMAW) was combined with additional hot-wire feeding. By using two separate wires made of titanium and aluminum, it is possible to implement the alloy formation of titanium aluminides directly in the weld bead of the welding process. In this study, wall structures were built layer-by-layer with alloy compositions between 10 at% and 55 at% aluminum by changing the feeding rates. During this investigation, the macroscopic characteristics, microstructural formation, and the change of the microhardness values were analyzed. A close examination of the influence of welding speed and post-process heat treatment on the Ti–47Al alloy was performed; this being particularly relevant due to its economically wide spread applications.


Sign in / Sign up

Export Citation Format

Share Document