Automatic Design Method of Wind Turbine Tower and it’s Application

2010 ◽  
Vol 139-141 ◽  
pp. 1277-1280
Author(s):  
Dong Hai Su ◽  
Mei Yan Zhang ◽  
Tie Qiang Ma ◽  
Xiao Qiu Han ◽  
Chuan Zong Sun ◽  
...  

In order to solve the engineering application problems of parametric rapidly in design of wind turbine tower, an automatic design method of wind turbine tower is put forward first, and the automatic design model was built through analyzing the key parameters and parameters’ calculation relation in different cases: same taper tower design and variable taper tower design. The key parameters, height, diameter and wall thickness of the tower, are mainly considered. Then, an automatic design system of the wind turbine tower is developed and realized according to the model. Finally, the system effectiveness is verified through taking a wind turbine for example. The results show that the system can enhance the design efficiency and shorten the cycle times at the same time.

Author(s):  
Felipe M. Pasquali ◽  
Jonatan Meza ◽  
John F. Hall

Abstract Product durability impacts both the environment and the economy. Companies are changing their business models to the circular economy. In this model, the ownership of the product remains with the manufacturer. With this new paradigm, determining the life of the product becomes even more important for the success of the business model. The metric defined as the Marginal Cost of Durability (MCD) determines the cost to increase or decrease the life of the system. For a system to last longer, more materials are needed to counteract the fatigue damage. While this metric has been defined and used in studies throughout the literature, there is a need for a formal method of collecting this data. This paper presents a novel method for measuring the MCD aided by Metamodel-Based Optimization. A case study is presented to demonstrate this method when applied to a wind turbine tower. The results indicate that there is an increasing linear relationship between life and cost. A wind turbine tower designed for 80 years has 34% more mass and cost than a 20-year design.


Author(s):  
Xinzhong Xu ◽  
Kepeng Xu ◽  
Baoqing Li ◽  
Qing Chen ◽  
Hongde Jiang

In this part of present paper the key technologies for steam turbine blade and non-blade components developed by using the precise, full-dimensional (PFD) system is described firstly. For blade components advanced aerodynamic concept and design method for customized after-loaded profile, compound-lean blade, tandem cascade, contoured endwall, and solid particle erosion protection for HP and IP first nozzle have been developed. For non-blade component including main steam inlet/control valve, LP exhaust hood, packing seal and cavity flow, casing opening and condenser, new aerodynamic and mechanical design has been developed. New blade and non-blade components were experimentally and numerically investigated to verify its performance. Finite element method (FEM) analysis for all key components is also illustrated in this paper. Secondly the approach of validation and updating for the PFD system is introduced. Based on a large amount of on-site performance test data in power plants the statistic accuracy for the PFD system is given. It shows that in comparison with conventional F3D design methodology another 1.5-2 percent of HP and IP overall section efficiency improvement has been achieved.


2014 ◽  
Vol 684 ◽  
pp. 273-278 ◽  
Author(s):  
Jia Sun ◽  
Ke Zhang ◽  
Yu Hou Wu

To meet the urgent demand of maintenance and lifting equipment for wind turbine, combined with designation demand, two kinds of primary structure of the maintenance and lifting equipment has been proposed, analyzed and compared. By means of the Solid Works software the initial design on the two kind of the machine, the self-climbing crane and the trailed hoisting platform, have been conducted, the static analysis has been performed based on the mechanics model, and the advantages and disadvantages of these methods have been pointed out and compared in the paper. Compared with the self-climbing crane, the mechanical structure of the trailed hoisting platform is simpler, the control system presented more reliable, simple, easier realized etc, and the cost is lower. The self-climbing crane is high-automatic, but the design of crane high in the free degree and high in difficulty, and the climbing force focused on the wind turbine tower is too large. Conclusion The trailed hoisting platform is determined as the main design method to design the maintenance and lifting equipment for wind turbine.


2012 ◽  
Vol 487 ◽  
pp. 588-592
Author(s):  
Zhen Yun Duan ◽  
Xiao Jiao Liu ◽  
Tie Qiang Ma

In order to improve the design efficiency of wind turbine tower, a design method which combines configuration and parametric design is proposed, the general structure model of wind turbine tower is given, and the parameter relation model of tower components is established. Based on skeleton and coordinate system coincident method, the automatic assembly of 3D tower model is realized. An automated 3D design software system of wind turbine tower is built by the API of Pro/E. The validity of the system is proved by wind turbine SUT-1500.


2011 ◽  
Vol 121-126 ◽  
pp. 1053-1057
Author(s):  
Bin Qi ◽  
Xia Sun ◽  
Yu Rong Liu ◽  
Xiao Ming Sun ◽  
Miao Wang

Fire engine design is based on the traditional method and product design cycle. In this way, it cost a lot of time. The article proposed a new fire engine design flow. Under the parameter restraint conceptual design method, Rapid Design System (QDS) constructed the database which has the parameter reference value non-parameter model. This article taken the fire engine as an example, and constructed the fire engine Rapid Design System using Script, Visual Basic 2008, and Access2007. The example confirmed this method to raise fire engine's design efficiency.


2013 ◽  
Vol 351-352 ◽  
pp. 825-828
Author(s):  
Xi Le Li ◽  
Li Min Ren

In this paper, it was analyzed and summarized about load character, load calculation methods of wind turbine tower. A calculation for cone tower of 1.5MW wind turbine is taken as an example of finite element analysis, its static characteristic are given as well. It presents the maximum displacement and the corresponding maximum stress, and the strength of the tower is also calculated under various loads. The results show that: the finite element model is feasible in engineering application, the strength of tower under static load meet the requirements, will not occur strength failure.


2015 ◽  
Vol 135 (3) ◽  
pp. 200-206 ◽  
Author(s):  
Yoki Ikeda ◽  
Naoto Nagaoka ◽  
Yoshihiro Baba

2019 ◽  
Vol 1 (2) ◽  
pp. 137-142
Author(s):  
Verna Y.P. Bokau ◽  
Kristian Dame ◽  
Victory Polly ◽  
Steven Pandelaki

These paper present the designing system of wind turbine for public fish cages lighting at Belang Village in Southeast Minahasa. Belang is one of popular destination to find a fresh fish in north sulawesi, but the problem is the efficiency of electricity is not sufficient for the fish farmer. Propeller helps in the motor to generating electricity. Comprehensive research studies are carried out in order to measure the lighting resistances. The generated data from wind turbine can be seen using LCD 2x16 which connected with microcontroller Arduino Uno. Finally, conclusions are fully drawn.


Sign in / Sign up

Export Citation Format

Share Document