Design System Energy Sustainable Using Wind Turbine For Public Fish Cages Lightning at Belang Village in Southeast Minahasa

2019 ◽  
Vol 1 (2) ◽  
pp. 137-142
Author(s):  
Verna Y.P. Bokau ◽  
Kristian Dame ◽  
Victory Polly ◽  
Steven Pandelaki

These paper present the designing system of wind turbine for public fish cages lighting at Belang Village in Southeast Minahasa. Belang is one of popular destination to find a fresh fish in north sulawesi, but the problem is the efficiency of electricity is not sufficient for the fish farmer. Propeller helps in the motor to generating electricity. Comprehensive research studies are carried out in order to measure the lighting resistances. The generated data from wind turbine can be seen using LCD 2x16 which connected with microcontroller Arduino Uno. Finally, conclusions are fully drawn.

2020 ◽  
Vol 5 (1) ◽  
pp. 78
Author(s):  
Ade Sumaedi ◽  
Makhsun Makhsun ◽  
Achmad Hindasyah

PT. Duta Nichirindo Pratama is a company engaged in the field of Autoparts Manufacture. Barcode is the identity of an item / product on the package. Barcode technology has been used as the identity of goods in a production. Barcodes are used to facilitate the identification of goods produced. Paste the barcode on the packaging of packaging results at PT. Duta Nichirindo Pratama is done manually, but there are often errors attached to the barcode on a similar packaging. This research will design and create a system based on Visual Basic.Net and Arduino to select barcode attachment errors that have the potential to be sent to consumers. The system is designed using Unified Modeling Language (UML) diagrams, database design and interface menu design. The system created will then be tested to detect the black box test. With a computing-based design system that functions to detect barcodes on the packaging automatically, the problem of sticking barcodes on the packaging can be detected.


2021 ◽  
Vol 10 (1) ◽  
pp. 1
Author(s):  
Bintara Putra Candra Bareta ◽  
Alex Harijanto ◽  
Maryani Maryani

Water quality in the process of ornamental fish cultivation plays an important role in creating an environment of life that is in accordance with the needs of ornamental fish. Acidity (pH) and water temperature are one of the important factors of ornamental fish growth. The purpose of this study is to describe how the design system builds arduino-based humidity and pH temperature measuring instruments. Review the validity of moisture temperature and water pH. Monitor the humidity temperature and pH of ornamental fish aquarium water to know the results of the same data with liturgy. This research is a research and development research, conducted in the Laboratory of Physics Education Study FKIP Jember University. The research time was carried out for four months. The samples used in this study were ornamental carp. Based on the analysis of data obtained, it can be concluded that, (1) The work of pH, temperature, and spouting systems based on Arduino Uno is made with sen0161-V2, DS18B20 and DHT-11 sensors and data appearance media namely LCD. (2) Rakaian system is then calibrated to state that the system can be used properly. Calibration includes Arduino-based pH, temperature and Humidity sensor calibration as well as LCD testing. (3) The data that has been found by the researcher and the data in the literature has a match.   Keywords: water quality, Acidity (pH), water temperature, arduino-based.


2011 ◽  
Vol 347-353 ◽  
pp. 2386-2389
Author(s):  
Shao Nong Wang ◽  
Yong Guang Li ◽  
Zhen Wu Wu

This paper introduces the household wind turbine and grid joint power supply system, indicates the outstanding advantages of the system: energy saving, environmental protection, security and so on. And the economic model is established, based on the wind speed information of Shanghai, to analyze the economic development potential.


2019 ◽  
Vol 10 (1) ◽  
pp. 84-93
Author(s):  
Redaksi Tim Jurnal

This research discusses the fulfillment of the electricity needs of remote communities that are closely related to electrification ratios. Electrification ratios in some isolated areas and scattered islands in Indonesia are still very low. To date, most of the electricity needs in Indonesia is still supplied by Diesel Power Electricity Generator (PLTD) which uses diesel as its fuel. Therefore, it is necessary the utilization of renewable energy as one step to fulfill the electrical energy needs. This research studies about the utilization of wind energy with PLTB by using low speed wind turbine to fulfill the electricity needs of remote communities and scattered islands in Indonesia. NT1000W is the latest technology of low speed wind turbine that can operate at wind speed of 1 m/d up to 60 m/d appropriate to the wind conditions in Indonesia. Testing conducted in west Sumatera particularly in Padang city and Kapo-Kapo Island provide a feasibility of PLTB NT1000W technically and financially.


2010 ◽  
Vol 139-141 ◽  
pp. 1277-1280
Author(s):  
Dong Hai Su ◽  
Mei Yan Zhang ◽  
Tie Qiang Ma ◽  
Xiao Qiu Han ◽  
Chuan Zong Sun ◽  
...  

In order to solve the engineering application problems of parametric rapidly in design of wind turbine tower, an automatic design method of wind turbine tower is put forward first, and the automatic design model was built through analyzing the key parameters and parameters’ calculation relation in different cases: same taper tower design and variable taper tower design. The key parameters, height, diameter and wall thickness of the tower, are mainly considered. Then, an automatic design system of the wind turbine tower is developed and realized according to the model. Finally, the system effectiveness is verified through taking a wind turbine for example. The results show that the system can enhance the design efficiency and shorten the cycle times at the same time.


2020 ◽  
Vol 3 (1) ◽  
pp. 43-46
Author(s):  
Rian Ari Wibowo ◽  
Mochammad Djaohar ◽  
Nur Hanifah Yuninda

Abstract. The research aimed to design and make motor control device to keep pH of catfish pond water using Arduino Uno pH and ultrasonic sensor. Research using Research and Development (Research and Development) which includes design, system requirement analysis, design, testing and system implementation. Research consists of three main subsystems, namely input, system and output. Sub-system consists of pH sensor, Ultrasonic and Flowmeter to manage the automation process in maintaining water quality in catfish pond contained in Arduino Uno microcontroller. The output subsystems are AC and DC motors for dewatering, filling and checking samples to be displayed on the LCD. Based on the results of the over all testing that has been done, it is known that the motor control device to maintain the pH of the water catfish pond using pH and ultrasonic sensor based Arduino Uno able to maintain the condition of catfish pond water in the conditions suitable for catfish habitat, that is with pH 6.5 - 8. Keywords: Catfish (Clariasspp), pH Stabilizer, Arduino Uno, pH Sensor, Ultrasonic. Abstrak Penelitian bertujuan untuk merancang dan membuat  Alat pengendalian motor untuk menjaga pH air kolam ikan lele menggunakan sensor pH dan ultrasonic berbasis Arduino Uno. Penelitian menggunakan Metode Penelitian dan Pengembangan (Research and Development) yang meliputi perancangan, analisis kebutuhan sistem, perancangan, pengujian dan implementasi sistem. Penelitian terdiri dari 3 subsistem utama, yaitu input, sistem dan output.subsistem input terdiri dari sensor pH, Ultrasonic dan Flowmeter untuk mengatur proses otomatisasi  dalam menjaga kualitas air pada kolam lele yang terdapat didalam mikrokontroler Arduino Uno. Subsistem outputnya adalah motor AC dan DC untuk melakukan pengurasan, pengisian dan pengecekan sampel yang akan di tampilkan pada LCD. Berdasarkan hasil pengujian secara keseluruhan yang telah dilakukan, diketahui bahwa alat pengendalian motor untuk menjaga pH air kolam ikan lele menggunakan sensor pH dan ultrasonic berbasis Arduino Uno mampu menjaga kondisi air kolam lele dalam kondisi sesuai bagi habitat lele, yaitu dengan pH 6,5 – 8.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Travis J. Carrigan ◽  
Brian H. Dennis ◽  
Zhen X. Han ◽  
Bo P. Wang

The purpose of this study is to introduce and demonstrate a fully automated process for optimizing the airfoil cross-section of a vertical-axis wind turbine (VAWT). The objective is to maximize the torque while enforcing typical wind turbine design constraints such as tip speed ratio, solidity, and blade profile. By fixing the tip speed ratio of the wind turbine, there exists an airfoil cross-section and solidity for which the torque can be maximized, requiring the development of an iterative design system. The design system required to maximize torque incorporates rapid geometry generation and automated hybrid mesh generation tools with viscous, unsteady computational fluid dynamics (CFD) simulation software. The flexibility and automation of the modular design and simulation system allows for it to easily be coupled with a parallel differential evolution algorithm used to obtain an optimized blade design that maximizes the efficiency of the wind turbine.


2018 ◽  
Vol 7 (3.4) ◽  
pp. 122 ◽  
Author(s):  
Adam Faroqi ◽  
Adi Fitriadi ◽  
Neni Utami Adiningsih ◽  
Muhammad Ali Ramdhani

The purpose of this research is to design an automatic door control system using media consist of Arduino Uno, SMS Gateway, ultrasonic sensor, relay, accu (batterai), buzzer, and adapter. The design methodology did with several stages: software design, hardware design, system implementation, and system testing. The design results show the system works well for opening and locking doors via SMS Gateway, as well as alerting via SMS when the door opened forcibly.  


2018 ◽  
Vol 19 (2) ◽  
pp. 111
Author(s):  
Laura Anastasi Seseragi Lapono ◽  
Redi Kristian Pingak

Sound Level Meter (SLM) is a tool used to measure the noise level for a moment. For improved performance, hence required a measure of noise level capable of displaying result automatically on the computer so that simplify user to observe and measure the noise. In this study, the design system of data acquisition consists of a MAX4466 sound sensor, Arduino UNO microcontroller, and computer to display the measurement result. The measurement results are displayed in the form of data and graphs. The display of software designed using the Delphi 7.0. The process of taking data in the room with a sound intensity of 44.6 dB. The value is the measurement result using the SLM tool, while the measurement results using the sound sensor performed every second during an interval of 30 seconds obtained an average of 44.19 dB. It can be seen that between the two results shows a relatively small difference, so it can be concluded that the design of this system is running well. Keywords: Noise, SLM, Sound sensor, Arduino Uno


Sign in / Sign up

Export Citation Format

Share Document