Prediction of Springback in Metal Forming of Diaphragm of Automotive Horn Based on BPANN

2010 ◽  
Vol 139-141 ◽  
pp. 594-599
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng

The spring steel strip 50CrVA which is cold rolled was applied to manufacture the diaphragm of the automotive horn by means of sheet metal forming. The combination of the experiments with back-propagation artificial neural network (BPANN) is used to solve the springback problem of the diaphragm. Experiments have shown that a 4-8-1 BPANN is able to predict the springback of the diaphragm successfully, and the network is able to model the relationship between the springback of the diaphragm and the process parameters rationally. BPANN simulation results and experimental ones have shown that the springback of the diaphragm is particularly influenced by such parameters as blank thickness, Young’s modulus, punch radius and yield ratio. Furthermore, the springback of the diaphragm decreases with the increase of blank thickness and Young’s modulus, but increases with the increase of punch radius and yield ratio.

2009 ◽  
Vol 628-629 ◽  
pp. 505-510 ◽  
Author(s):  
Yan Qiu Zhang ◽  
S.Y. Jiang ◽  
Y.F. Zheng ◽  
Li Hong Zhao

The influences of four parameters such as young’s modulus, yield ratio, punch radius and blank thickness on the springback of diaphragm of automotive horn are analyzed by combining experiment with FEM (finite element method), and the springback laws of the parameters’ interaction are revealed. The results show that the springback of diaphragm is influenced by the yield ratio of material evidently, but is influenced by punch radius slightly when the parameters interact. However, the influence of punch radius increases greatly when the young’s modulus is very low. Therefore, the influence of the parameters’ interaction must be considered so as to control the springback effectively when the forming scheme of diaphragm is designed.


Holzforschung ◽  
2002 ◽  
Vol 56 (1) ◽  
pp. 1-6 ◽  
Author(s):  
Ugai Watanabe ◽  
Minoru Fujita ◽  
Misato Norimoto

Summary The relationship between transverse Young's moduli and cell shapes in coniferous early wood was investigated using cell models constructed by two dimensional power spectrum analysis. The calculated values of tangential Young's modulus qualitatively explained the relationship between experimental values and density as well as the difference in experimental values among species. The calculated values of radial Young's modulus for the species having hexagonal cells agreed well with the experimental values, whereas, for the species having square cells, the calculated values were much larger than the experimental values. This result was ascribed to the fact that the bending moment on the radial cell wall of square cell models was calculated to be small. It is suggested that the asymmetrical shape of real wood cells or the behavior of nodes during ell deformation is an important factor in the mechanism of linear elastic deformation of wood cells.


2011 ◽  
Vol 415-417 ◽  
pp. 455-459
Author(s):  
Xiao Ming Wang ◽  
Fei Wang ◽  
Xue Zeng Zhao ◽  
Da Lei Jing

The modified static bending model of microcantilever with monolayer molecules has been established based on energy method, in which the change in neutral layer position caused by adsorption-induced stress has been considered. On this basis, we have analyzed the relationship between the bending curvature radius of a microcantilever with its thickness, Young’s modulus and molecule-molecule distance of adsorbed molecules when it is adsorbed with monolayer water molecules. Additionally, we have investigated the effect of change in neutral layer position on the static behavior of microcantilever sensors and have found that: 1) the bending curvature radius of microcantilever is affected by its Young’s modulus, thickness and distance of adsorbed molecules respectively; 2)the predicted error of bending curvature radius caused by the change in neutral layer position slightly increases with decreasing Young’s modulus and thickness, whereas the effect of distance between adsorbed molecules on the error is significant.


2019 ◽  
Vol 1 (1) ◽  
pp. 74
Author(s):  
Grib S.V. ◽  
Ivasishin O.M. ◽  
Illarionov A.G. ◽  
Karabanalov M.S.

.


2019 ◽  
Vol 946 ◽  
pp. 309-314 ◽  
Author(s):  
Anatoly G. Illarionov ◽  
S.V. Grib ◽  
A.V. Huppeev

The relationship between the phase composition and the Young’s modulus in quenched PT-7M, Ti-6Al-7Nb, BT16 titanium alloys has been studied using the structural analysis, thermodynamic calculations in the Thermo-Calc software and micro-indentation. It is found that the nature of the change in the Young’s modulus in the investigated titanium alloys after quenching from the two-phase α+β-region depends on the chemical composition of the alloy, which determines the nature of the observed metastable phases (α', α", ω, β). The correlation between the extreme change in the Young’s modulus from the quenching temperature and the so-called interatomic bonding force (Fb) calculated from the electronic structure parameters of the α, α', β phases was shown for the Ti-6Al-7Nb alloy. The relationship between the limits of the Young’s modulus of the investigated alloys during quenching with the level of their alloying with α-and β-stabilizers is shown.


2019 ◽  
Vol 21 (1) ◽  
Author(s):  
Matthew L. Fitzgerald ◽  
Sara Tsai ◽  
Leon M. Bellan ◽  
Rebecca Sappington ◽  
Yaqiong Xu ◽  
...  

2017 ◽  
Vol 865 ◽  
pp. 366-372
Author(s):  
Jing Sen Liu ◽  
Hai Bo Li ◽  
Guo Kai Zhang ◽  
Jian Deng

In order to improve the accuracy of the rock mechanical parameters, the correlations among physical and mechanical parameters were investigated. A large number of laboratory testing results curried out on 408 rock specimens including metamorphic rocks, sedimentary rocks and igneous rocks. Through the statistical analysis of the laboratory test data, several regression equations among rock material parameters were established. The research suggests that, in addition to Poisson's ratio, the mechanical parameters (unconfined compressive strength (UCS), elastic Young’s modulus, shear modulus) relate well to physical parameters (porosity, P-wave velocity), and the relationships are mainly described by power and exponential correlations which have good squared regression coefficients. The correlation between elastic Young’s modulus and dynamic elastic modulus was established, as well as the relationship between shear modulus and dynamic shear modulus.


Sign in / Sign up

Export Citation Format

Share Document