On the Angular Variation and Texture Dependence of Young's Modulus in Cold-Rolled Copper Sheet

1969 ◽  
Vol 31 (2) ◽  
pp. 565-569 ◽  
Author(s):  
H. J. Bunge ◽  
R. Ebert ◽  
F. Günther
2010 ◽  
Vol 139-141 ◽  
pp. 594-599
Author(s):  
Yan Qiu Zhang ◽  
Shu Yong Jiang ◽  
Yu Feng Zheng

The spring steel strip 50CrVA which is cold rolled was applied to manufacture the diaphragm of the automotive horn by means of sheet metal forming. The combination of the experiments with back-propagation artificial neural network (BPANN) is used to solve the springback problem of the diaphragm. Experiments have shown that a 4-8-1 BPANN is able to predict the springback of the diaphragm successfully, and the network is able to model the relationship between the springback of the diaphragm and the process parameters rationally. BPANN simulation results and experimental ones have shown that the springback of the diaphragm is particularly influenced by such parameters as blank thickness, Young’s modulus, punch radius and yield ratio. Furthermore, the springback of the diaphragm decreases with the increase of blank thickness and Young’s modulus, but increases with the increase of punch radius and yield ratio.


2019 ◽  
Vol 1 (1) ◽  
pp. 74
Author(s):  
Grib S.V. ◽  
Ivasishin O.M. ◽  
Illarionov A.G. ◽  
Karabanalov M.S.

.


2013 ◽  
Vol 575-576 ◽  
pp. 453-460
Author(s):  
Hui Hong Liu ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Junko Hieda ◽  
Ken Cho

A novel β-type titanium alloy with a changeable Youngs modulus, that is, with a low Young's modulus to prevent the stress-shielding effect for patients and a high Young's modulus to suppress springback for surgeons, should be developed in order to satisfy the conflicting requirements of both the patients and surgeons in spinal fixation operations. In this study, the oxygen content in ternary Ti-11Cr-O alloys was optimized in order to achieve a large changeable Young's modulus with good mechanical properties for spinal fixation applications. The increase in Youngs moduli of all the examined alloys by cold rolling is attributed to the deformation-induced ω-phase transformation which is suppressed by oxygen. Among the examined alloys, the Ti-11Cr-0.2O alloy exhibits the largest changeable Youngs modulus and a high tensile strength with an acceptable plasticity under both solution-treated (ST) and cold-rolled (CR) conditions. Therefore, the Ti-11Cr-0.2O alloy, which shows a good balance among a changeable Youngs modulus, high tensile strength and good plasticity, is considered a potential candidate for spinal fixation applications.


1980 ◽  
Vol 4 (2) ◽  
pp. 111-127 ◽  
Author(s):  
Hsun Hu

The elastic properties of as-cold-rolled and of the subsequently annealed sheets of a phosphorus steel having high normal plastic anisotropy and low planar plastic anisotropy have been calculated according to the averaging procedures of Voigt, Reuss, and Hill incorporated with texture-weighting functions. The calculated values of Young's modulus in the various directtions lying in the plane of the sheet were compared with those determined experimentally by ultrasonic measurements. Results indicate that the Hill averages are very close to reality, whereas the Voigt and Reuss averages are somewhat too high and too low, respectively, in comparison with experimentally measured values. This paper has been prepared to help familiarize metallurgists, engineers, and students with the mathematical treatments that can be used for such studies. The procedures used for the calculations are described in detail, and examples of calculations are provided in the Appendix.


2015 ◽  
Vol 55 (7) ◽  
pp. 1502-1511 ◽  
Author(s):  
Taro Kizu ◽  
Kaneharu Okuda ◽  
Yasunobu Nagataki ◽  
Toshiaki Urabe ◽  
Kazuhiro Seto

2010 ◽  
Vol 638-642 ◽  
pp. 495-500 ◽  
Author(s):  
Toshikazu Akahori ◽  
Mitsuo Niinomi ◽  
Masaaki Nakai ◽  
Harumi Tsutsumi ◽  
Tomokazu Hattori ◽  
...  

A new -type Ti alloy composed of non-toxic and allergy-free elements like Nb, Ta, and Zr, Ti-29Nb-13Ta-4.6Zr alloy (TNTZ) proposed by present authors, has been developed in order to achieve relatively low Young’s modulus and excellent mechanical performance. On the other hand, Zr has been also paid attention as metallic biomaterial for the next generation because of good biocompatibility nearly equal to Ti or a few GPa smaller Young’s modulus as compared to one. In this study, mechanical performances such as tensile properties and Young's modulus of TNTZ subjected to thermo-mechanical treatments or severe deformation, and the mechanical properties and biocompatibility of Zr-Nb system alloys were investigated in order to judge their potential for biomedical applications. Young’s modulus of as-solutionized TNTZ, which is around 63 GPa, is pretty similar to that of as-cold-rolled TNTZ. The Young’s moduli of hot-rolled Ti-6Al-4V ELI alloy are respective around 110 GPa. The Young’s moduli of as-solutionized and as-cold-rolled TNTZ are around a half of those, and are twice as large as that of the cortical bone. The tensile strengths of TNTZ aged after solution treatment and those aged after cold rolling decrease with an increase in the aging temperature, although the elongation shows the reverse trend. The tensile strength of as-cold-rolled TNTZ is improved drastically through severe deformation such as high pressure torsion and shows more than 1000 MPa. Zr-XNb system alloy (X: 5-30mass%) shows the smallest value of Young’s modulus (around 58 GPa) at Nb content of 20mass%. In the case of implantation of the bars made of Zr-XNb system alloys into the lateral femoral condyles of Japanese white rabbits, the tendency of contact between the cancellous bone and the bar becomes remarkably at 24 weeks after the implantation according to increasing with Nb content.


Sign in / Sign up

Export Citation Format

Share Document