Preparation and Recognition Properties of Andrographolide Molecularly Imprinted Ploymer Microspheres

2010 ◽  
Vol 160-162 ◽  
pp. 777-782
Author(s):  
Xiao Ying Yin ◽  
Liu Qing Shan ◽  
Xiu Lin Han ◽  
Yong Ming Luo

Molecular imprinted polymer micrcosheres (MIPMs) were prepared through precipitation polymerization by andrographolide using as the template molecule. The morphologies of synthesized MIPMs were characterized by scanning electronmicroscope (SEM). Systematic investigations of the influences of key synthetic conditions, including functional monomers, cross-linkers and porogens, on the morphologies, yields and the recognition properties of the MIPs were conducted. The results indicated that the morphologies of MIPs with DVB as cross-linker was perfect, but their binding affinity is lower than that of MIPs with TRIM or EDMA as cross-linkers. And particle size of MIPs with TRIM as cross-linkers is small but with high binding affinity. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The application of MIPs with high affinity and excellent stereo-selectivity toward andrographolide in solid-phase extraction (SPE) column might offer a novel method for the enrichment and determination of terpenoids compounds in the traditional herbal medicine.

2014 ◽  
Vol 664 ◽  
pp. 34-37
Author(s):  
Yong Ming Luo ◽  
Yong Dong Luo ◽  
Fang You Chen ◽  
Xue Lian Zhang ◽  
Xiao Ying Yin

Molecular imprinted polymer micrcosheres (MIPMs) were prepared through precipitation polymerization by henriol C using as the template molecule. The morphologies of synthesized MIPMs were characterized by scanning electronmicroscope (SEM). Systematic investigations of the influences of key synthetic conditions, including functional monomers, cross-linkers and porogens, on the morphologies, yields and the recognition properties of the MIPs were conducted. The results indicated that the morphologies of MIPs with DVB as cross-linker was perfect, but their binding affinity is lower than that of MIPs with TRIM or EDMA as cross-linkers. And particle size of MIPs with TRIM as cross-linkers is small but with high binding affinity. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The application of MIPs with high affinity and excellent stereo-selectivity toward henriol C in solid-phase extraction (SPE) column might offer a novel method for the enrichment and determination of sesquiterpenoids in the traditional herbal medicine.


2012 ◽  
Vol 550-553 ◽  
pp. 1715-1718 ◽  
Author(s):  
Li Na Yi ◽  
Xiao Ying Yin ◽  
Yi Fan Jiang ◽  
Qing Shan Liu

Molecularly imprinted polymers (MIPs) were prepared by precipitation polymerization with ginsenoside Rg1 as the template molecule. The morphology of MIPs was characterized by scanning electronmicroscope (SEM) and its static adsorption capacity was measured by the Scatchard equation. Scatchard analysis revealed that the homogeneous binding sites were formed in the polymers. The application of MIPs with high affinity toward the template molecule might offer a novel method for the enrichment and determination of active compounds in the traditional herbal medicine.


1988 ◽  
Vol 251 (1) ◽  
pp. 141-145 ◽  
Author(s):  
A A Horner ◽  
M Kusche ◽  
U Lindahl ◽  
C B Peterson

Rat skin heparin proteoglycans vary markedly in the proportions of their constituent polysaccharide chains that have high binding affinity for antithrombin. As the proportion of such chains in a proteoglycan rises, their degree of affinity for antithrombin also increases [Horner (1987) Biochem. J. 244, 693-698]. The antithrombin-binding-site densities of such chains have now been determined, by measuring heparin-induced enhancement of the intrinsic fluorescence of antithrombin and by chemical analysis for the disaccharide sequence glucuronosyl-N-sulphoglucosaminyl (3,6-di-O-sulphate), which is unique to this site in heparin [Lindahl, Bäckström, Thunberg & Leder (1980) Proc. Natl. Acad. Sci. U.S.A. 77, 6551-6555]. Antithrombin-binding-site density ranged from one to five sites per chain.


2015 ◽  
Vol 7 (2) ◽  
pp. 551-559 ◽  
Author(s):  
Yulei Wang ◽  
Meng Mei ◽  
Xiaojia Huang ◽  
Dongxing Yuan

New monolithic fibers based on dual functional monomers were prepared and applied to the solid-phase microextraction and determination of sudan dyes (I, II, III and IV) in tomato sauce and egg yolk samples by coupling with high-performance liquid chromatography.


2021 ◽  
Vol 56 (14) ◽  
pp. 8439-8460
Author(s):  
Marta Janczura ◽  
Monika Sobiech ◽  
Joanna Giebułtowicz ◽  
Piotr Luliński

AbstractIt this paper, the comprehensive design process was carried out to fabricate selective, molecularly imprinted polymer (MIP). The material was used as a sorbent in the optimized analytical method, aimed at verifying the hypothesis that the conditions of an analytical process could convert 4-hydroxyphenylacetic acid to 4-hydro-3-nitrophenylacetic acid, comprising a series of novel studies. The design stage consisted of the analysis of specificity of the MIP, synthesized from the cross-linker and used five various functional monomers independently, in the presence of four different templates. The MIP from 1-vinylimidazole, imprinted by 4-hydroxyphenylacetic acid, revealed the highest specificity in relation to 4-hydro-3-nitrophenylacetic acid, with an affinity factor equal to 3, and the highest selectivity from a group of structurally similar and biologically important biomolecules. The theoretical analysis revealed that electrostatic interaction between the analyte and the polymer matrix enhanced selectivity. The physicochemical characterization showed the specific surface area of the MIP as being equal to 368.6 m2 g−1, and the presence of nitrogen atoms at the level of 6.80% wt., confirming the monomer residue in the material structure. The MIP was applied in the solid phase extraction protocol, allowing for the analysis of 4-hydroxy-3-nitrophenylacetic acid in a human urine sample. Finally, the conversion of 4-hydroxyphenylacetic acid in human urine in nitrate and nitrite salts at low pH conditions revealed an almost twofold increase in 4-hydro-3-nitrophenylacetic acid to 775 ± 81 ng L−1. The results also confirmed the applicability of the new MIP sorbent for the purpose of analysis of low levels of analyte, present in the complex sample.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2656
Author(s):  
Matteo Charello ◽  
Laura Anfossi ◽  
Simone Cavalera ◽  
Fabio Di Nardo ◽  
Fiora Artusio ◽  
...  

An innovative approach to imprinted nanoparticles (nanoMIPs) is represented by solid-phase synthesis. Since the polymeric chains grow over time and rearrange themselves around the template, the binding properties of nanoMIPs could depend on the polymerization time. Here we present an explorative study about the effect of different polymerization times on the binding properties of ciprofloxacin-imprinted nanoMIPs. The binding properties towards ciprofloxacin were studied by measuring the binding affinity constants (Keq) and the kinetic rate constants (kd, ka). Furthermore, selectivity and nonspecific binding were valued by measuring the rebinding of levofloxacin onto ciprofloxacin-imprinted nanoMIPs and ciprofloxacin onto diclofenac-imprinted nanoMIPs, respectively. The results show that different polymerization times produce nanoMIPs with different binding properties: short polymerization times (15 min) produced nanoMIPs with high binding affinity but low selectivity (Keq > 107 mol L−1, α ≈ 1); medium polymerization times (30 min–2 h) produced nanoMIPs with high binding affinity and selectivity (Keq ≥ 106 mol L−1, α < 1); and long polymerization times (>2 h) produced nanoMIPs with low binding affinity, fast dissociation kinetics and low selectivity (Keq ≤ 106 mol L−1, kdis > 0.2 min−1, α ≈ 1). The results can be explained as the combined effect of rearrangement and progressive stiffening of the polymer chains around the template molecules.


Polymers ◽  
2021 ◽  
Vol 13 (16) ◽  
pp. 2788
Author(s):  
Ut Dong Thach ◽  
Hong Hanh Nguyen Thi ◽  
Tuan Dung Pham ◽  
Hong Dao Mai ◽  
Tran-Thi Nhu-Trang

Background: Ciprofloxacin (CIP), an important broad-spectrum fluoroquinolone antibiotic, was often used as a template molecule for the preparation of imprinted materials. In this study, methacrylic acid and 2-vinylpyridine were employed for the first time as dual functional monomers for synthesizing ciprofloxacin imprinted polymers. Methods: The chemical and physicochemical properties of synthesized polymers were characterized using Fourier transform-infrared spectroscopy, thermogravimetric analysis-differential scanning calorimetry, scanning electron microscopy, and nitrogen adsorption-desorption isotherm. The adsorption properties of ciprofloxacin onto synthesized polymers were determined by batch experiments. The extraction performances were studied using the solid phase extraction and HPCL-UV method. Results: The molecularly imprinted polymer synthesized with dual functional monomers showed a higher adsorption capacity and selectivity toward the template molecule. The adsorbed amounts of ciprofloxacin onto the imprinted and non-imprinted polymer were 2.40 and 1.45 mg g−1, respectively. Furthermore, the imprinted polymers were employed as a selective adsorbent for the solid phase extraction of ciprofloxacin in aqueous solutions with the recovery of 105% and relative standard deviation of 7.9%. This work provides an alternative approach for designing a new adsorbent with high adsorption capacity and good extraction performance for highly polar template molecules.


2017 ◽  
Vol 9 (42) ◽  
pp. 6009-6018 ◽  
Author(s):  
Hai Gen Zuo ◽  
Hong Yang ◽  
Jian Xin Zhu ◽  
Yuan Ding

A novel method was established using RAM-MIP and GC for determination of α-endosulfan, β-endosulfan, endosulfate, endosulfan-ether, endosulfan lacton, heptachlor, heptachlor-exo-epoxide, heptachlor-endo-epoxide residues in pork.


Sign in / Sign up

Export Citation Format

Share Document