Finite Element Analysis of Axially Loaded Confined Concrete Columns

2010 ◽  
Vol 163-167 ◽  
pp. 1029-1032
Author(s):  
He Meng ◽  
Kun Yang ◽  
Qing Xuan Shi ◽  
Jin Jie Men

The finite element analysis of high-strength concrete columns confined by high-strength spiral lateral ties under concentric compression is introduced in this paper. The variables of tie strength, tie spacing and tie configuration influencing the characteristics of confined concrete are discussed; and the stress distributions of lateral ties and concrete at cross-section are analyzed. Compared with the test results, this finite element analysis can predict well the behavior of axially loaded concrete confined by lateral ties. It’s indicated that after peak load, normal stirrups loss the effective constraint on concrete due to yielding early, while the high-strength stirrups can continue to provide larger constraint which can improve significantly the ductility of confined concrete.

2011 ◽  
Vol 94-96 ◽  
pp. 641-646
Author(s):  
Zhao Qiang Zhang ◽  
Yong Yao

Based on the constitutive models of steel and core concrete,the failure modes and the load-displacement curves of the solid multibarrel tube-confined concrete columns(CHS inner and SHS outer) under monotonic loading are calculated by using finite element analysis (FEA) method.The analytical results reveal the rules of stress distribution in steel and core concrete.The influences of axial compression ratio, yield strength of steel tube and concrete on the load-displacement curves are discussed.Through the results,it is deeply known the working mechanism of members(CHS inner and SHS outer) subjected to the static loads.


2011 ◽  
Vol 94-96 ◽  
pp. 2153-2156
Author(s):  
Dong Ling Yu

The mainframe of high-pressure grouting machine used for daily ceramics is the main load bearing member, and it has high strength and stiffness requirements. The finite element static analysis on mainframe is discussed in this paper for researching its stress and transfiguration. The result can provide reference for design, and the discussion has some generality and practical value engineering.


Author(s):  
Kamran Asim ◽  
Jaewon Lee ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental results. Optical micrographs of the welds in specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The computational results of the finite element analysis indicate that the material inhomogeneity and geometry of the weld bead play an important role in the ductile necking/shear failure mechanism. The computational results match well with the experimental observations of the necking/shear failure and its location. A finite element analysis with consideration of void nucleation and growth based on the Gurson yield function was also carried out. The results of the finite element analysis based on the Gurson yield function are in good agreement with the experimental observations of the initiation of ductile fracture and its location.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
Jaewon Lee ◽  
Kamran Asim ◽  
Jwo Pan

In this study, the failure mechanism of laser welds in lap-shear specimens of a high strength low alloy (HSLA) steel under quasi-static loading conditions is examined based on the experimental and computational results. Optical micrographs of the welds in the specimens before tests were examined to understand the microstructure near the weld. A micrographic analysis of the failed welds in lap-shear specimens indicates a ductile necking/shear failure mechanism near the heat affected zone. Micro-hardness tests were conducted to provide an assessment of the mechanical properties of the joint area which has varying microstructure due to the welding process. A finite element analysis was also carried out to identify the effects of the weld geometry and different mechanical properties of the weld and heat affected zones on the failure mechanism. The results of the finite element analysis show that the geometry of the weld protrusion and the higher effective stress–plastic strain curves of the heat affected and weld zones result in the necking/shear failure of the load carrying sheet. The deformed shape of the finite element model near the weld matches well with that near a failed weld. A finite element analysis based on the Gurson yield function with consideration of void nucleation and growth was also carried out. The results of the finite element analysis indicate that the location of the material elements with the maximum void volume fraction matches well with that of the initiation of ductile fracture as observed in the experiments.


2011 ◽  
Vol 255-260 ◽  
pp. 3059-3063
Author(s):  
Yan Tao ◽  
Jun Sun ◽  
Zheng Liu ◽  
Li Wei Ma

This study proposed a method to reinforce existed structures. Nonlinear analysis for the rectangle axially loaded column with CFRP considering secondary load was done by the finite element analysis software ANSYS. The ultimate limit strengthen for seven rectangle axially columns with CFRP which compared with normal axial column respectively (one of them is comparative column no secondary) was estimated under different level secondary loads. This paper mainly investigated the influence of CFRP under secondary load. Coefficient of CFRP was given.


2015 ◽  
Vol 651-653 ◽  
pp. 1090-1095 ◽  
Author(s):  
Vitalii Vorkov ◽  
Richard Aerens ◽  
Dirk Vandepitte ◽  
Joost R. Duflou

Bump bending or step bending is a forming technique that allows making large radius bends in a sheet metal part by means of a series of bends performed close to each other. The bump bending process has been studied by means of both an experimental campaign and finite element analysis. High-strength steel Weldox 1300 and a punch of radius 30 mm have been used. The finite element calculations have been performed with Abaqus using the solid formulation and Implicit/Explicit solvers. The results of the finite element analysis have been validated experimentally by monitoring the bending process using a camera system aligned with the bending line. Experiments were performed on a press-brake with a capacity of 50 metric tons. Deflections of a sheet during and after bending have been measured using the images recorded by the camera. In order to investigate the influence of a new bend on a previously formed bend, experiments have been performed with different distances between two consecutive bends. Based on the experiments, the size of the affected zone for the bend has been measured. The dependence of the distance between two consecutive bends on the resulting global bending angle has been studied. Moreover the influence of the bump distance on the springback has been investigated.


2013 ◽  
Vol 648 ◽  
pp. 59-62
Author(s):  
Qi Yin Shi ◽  
Yi Tao Ge ◽  
Li Lin Cao ◽  
Zhao Chang Zhang

In this study, based on the test of the high strength materials of steel-encased concrete composite continuous beam, the ultimate flexural capacity of 8 composite continuous beams are analyzed by using the finite element analysis software ABAQUS. Numerical results show that it is a very good agreement for the load-deflection curves which obtained by finite element method (FEM) and those by the test results, and the error control is less than 8.5%. When selecting and utilizing appropriate cyclic constitutive model, element model and failure criterion of high strength steel and high strength concrete, the accuracy of the calculation can be improved better.


Sign in / Sign up

Export Citation Format

Share Document